transport proteins
Recently Published Documents


TOTAL DOCUMENTS

1275
(FIVE YEARS 175)

H-INDEX

97
(FIVE YEARS 10)

2022 ◽  
Vol 27 (1) ◽  
pp. 1
Author(s):  
Yizheng Wang ◽  
Qingfeng Pan ◽  
Xiaobin Liu ◽  
Yijie Ding

2022 ◽  
Vol 12 ◽  
Author(s):  
Yue Gong ◽  
Benzhi Dong ◽  
Zixiao Zhang ◽  
Yixiao Zhai ◽  
Bo Gao ◽  
...  

Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew’s correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.


2021 ◽  
Author(s):  
Jan Stephan Wichers ◽  
Paolo Mesén-Ramírez ◽  
Jing Yu-Strzelczyk ◽  
Gwendolin Fuchs ◽  
Jan Stäcker ◽  
...  

Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures – the food vacuole, the apicoplast, and the parasite plasma membrane – and showed essentiality of four out of the six membrane transporters during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1, PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis. Heterologous expression of wild-type and mutation constructs in Xenopus laevis oocytes indicated ion transport upon membrane hyperpolarization and a functional role of negatively charged amino acids protruding into the parasitophorous vacuole lumen. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development and provide the first functional characterization of PfPMRT1, an essential parasite membrane transporter.


Open Medicine ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 61-69
Author(s):  
Oluwafemi Gabriel Oluwole ◽  
Kili James ◽  
Abdoulaye Yalcouye ◽  
Ambroise Wonkam

Abstract Several causative factors are associated with hearing loss (HL) and brain disorders. However, there are many unidentified disease modifiers in these conditions. Our study summarised the most common brain disorders associated with HL and highlighted mechanisms of pathologies. We searched the literature for published articles on HL and brain disorders. Alzheimer’s disease/dementia, Parkinson’s disease, cognitive impairment, autism spectrum disorder, ataxia, epilepsy, stroke, and hypoxic-ischaemic encephalopathy majorly co-interact with HL. The estimated incidence rate was 113 per 10,000 person-years. Genetic, epigenetic, early life/neonatal stress, hypoxia, inflammation, nitric oxide infiltration, endoplasmic reticulum stress, and excess glutamate were the distinguished modifiers identified. Various mechanisms like adhesion molecules, transport proteins, hair cell apoptosis, and neurodegeneration have been implicated in these conditions and are serving as potential targets for therapies. To improve the quality of life of patients, these understandings will improve clinical diagnoses and management of HL and brain disorders.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gabriel Schneebauer ◽  
Victoria Drechsel ◽  
Ron Dirks ◽  
Klaus Faserl ◽  
Bettina Sarg ◽  
...  

Abstract Background In physoclist fishes filling of the swimbladder requires acid secretion of gas gland cells to switch on the Root effect and subsequent countercurrent concentration of the initial gas partial pressure increase by back-diffusion of gas molecules in the rete mirabile. It is generally assumed that the rete mirabile functions as a passive exchanger, but a detailed analysis of lactate and water movements in the rete mirabile of the eel revealed that lactate is diffusing back in the rete. In the present study we therefore test the hypothesis that expression of transport proteins in rete capillaries allows for back-diffusion of ions and metabolites, which would support the countercurrent concentrating capacity of the rete mirabile. It is also assumed that in silver eels, the migratory stage of the eel, the expression of transport proteins would be enhanced. Results Analysis of the transcriptome and of the proteome of rete mirabile tissue of the European eel revealed the expression of a large number of membrane ion and metabolite transport proteins, including monocarboxylate and glucose transport proteins. In addition, ion channel proteins, Ca2+-ATPase, Na+/K+-ATPase and also F1F0-ATP synthase were detected. In contrast to our expectation in silver eels the expression of these transport proteins was not elevated as compared to yellow eels. A remarkable number of enzymes degrading reactive oxygen species (ROS) was detected in rete capillaries. Conclusions Our results reveal the expression of a large number of transport proteins in rete capillaries, so that the back diffusion of ions and metabolites, in particular lactate, may significantly enhance the countercurrent concentrating ability of the rete. Metabolic pathways allowing for aerobic generation of ATP supporting secondary active transport mechanisms are established. Rete tissue appears to be equipped with a high ROS defense capacity, preventing damage of the tissue due to the high oxygen partial pressures generated in the countercurrent system.


2021 ◽  
Vol 22 (21) ◽  
pp. 11414
Author(s):  
Laura Nuñez-Gonzalez ◽  
Noa Carrera ◽  
Miguel A. Garcia-Gonzalez

Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.


Sign in / Sign up

Export Citation Format

Share Document