scholarly journals Persistence and Stability for a Generalized Leslie-Gower Model with Stage Structure and Dispersal

2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Hai-Feng Huo ◽  
Zhan-Ping Ma ◽  
Chun-Ying Liu

A generalized version of the Leslie-Gower predator-prey model that incorporates the prey structure and predator dispersal in two-patch environments is introduced. The focus is on the study of the boundedness of solution, permanence, and extinction of the model. Sufficient conditions for global asymptotic stability of the positive equilibrium are derived by constructing a Lyapunov functional. Numerical simulations are also presented to illustrate our main results.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shengbin Yu

We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003) 1069–1075) First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Changjin Xu ◽  
Yusen Wu

A Lotka-Volterra predator-prey model with time-varying delays is investigated. By using the differential inequality theory, some sufficient conditions which ensure the permanence and global asymptotic stability of the system are established. The paper ends with some interesting numerical simulations that illustrate our analytical predictions.


2013 ◽  
Vol 06 (01) ◽  
pp. 1250064 ◽  
Author(s):  
XIANGLAI ZHUO

The dynamical behaviors of a two-species discrete ratio-dependent predator–prey system are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization method. Further, we also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper [G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator–prey system, Indian J. Pure Appl. Math.42(1) (2011) 1–26] has done. The method given in this paper is new and very resultful comparing with papers [H. F. Huo and W. T. Li, Existence and global stability of periodic solutions of a discrete predator–prey system with delays, Appl. Math. Comput.153 (2004) 337–351; X. Liao, S. Zhou and Y. Chen, On permanence and global stability in a general Gilpin–Ayala competition predator–prey discrete system, Appl. Math. Comput.190 (2007) 500–509] and it can also be applied to study the global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present an open question.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


Filomat ◽  
2018 ◽  
Vol 32 (13) ◽  
pp. 4665-4672
Author(s):  
Demou Luo ◽  
Hailin Liu

In this article, we investigate the global asymptotic stability of a reaction-diffusion system of predator-prey model. By applying the comparison principle and iteration method, we prove the global asymptotic stability of the unique positive equilibrium solution of (1.1).


2016 ◽  
Vol 09 (04) ◽  
pp. 1650058 ◽  
Author(s):  
Fengying Wei ◽  
Qiuyue Fu

This paper focuses on the stabilities of the equilibria to a predator–prey model with stage structure incorporating prey refuge. By analyzing the characteristic functions, we obtain that the equilibria of the model are locally stable when some suitable conditions are being satisfied. According to the comparison theorem and iteration technique, the globally asymptotic stability of the positive equilibrium is discussed. And, the sufficient conditions of the global stability to the trivial equilibrium and the boundary equilibrium are derived. The study shows that the prey refuge will enhance the density of the prey species, and it will decrease the density of predator species. Finally, some numerical simulations are carried out to show the efficiency of our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Nai-Wei Liu ◽  
Ting-Ting Kong

We consider a predator-prey system with Beddington-DeAngelis functional response and delays, in which not only the stage structure on prey but also the delay due to digestion is considered. First, we give a sufficient and necessary condition for the existence of a unique positive equilibrium by analyzing the corresponding locations of a hyperbolic curve and a line. Then, by constructing an appropriate Lyapunov function, we prove that the positive equilibrium is locally asymptotically stable under a sufficient condition. Finally, by using comparison theorem and theω-limit set theory, we study the global asymptotic stability of the boundary equilibrium and the positive equilibrium, respectively. Also, we obtain a sufficient condition to assure the global asymptotic stability.


2004 ◽  
Vol 46 (1) ◽  
pp. 121-141 ◽  
Author(s):  
Rui Xu ◽  
Lansun Chen ◽  
M. A. J. Chaplain

AbstractA delayed predator-prey system with Holling type III functional response is investigated. It is proved that the system is uniformly persistent under some appropriate conditions. By means of suitable Lyapunov functionals, sufficient conditions are derived for the local and global asymptotic stability of a positive equilibrium of the system. Numerical simulations are presented to illustrate the feasibility of our main results.


Sign in / Sign up

Export Citation Format

Share Document