scholarly journals Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Shengbin Yu

We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003) 1069–1075) First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.

2013 ◽  
Vol 06 (01) ◽  
pp. 1250064 ◽  
Author(s):  
XIANGLAI ZHUO

The dynamical behaviors of a two-species discrete ratio-dependent predator–prey system are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization method. Further, we also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper [G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator–prey system, Indian J. Pure Appl. Math.42(1) (2011) 1–26] has done. The method given in this paper is new and very resultful comparing with papers [H. F. Huo and W. T. Li, Existence and global stability of periodic solutions of a discrete predator–prey system with delays, Appl. Math. Comput.153 (2004) 337–351; X. Liao, S. Zhou and Y. Chen, On permanence and global stability in a general Gilpin–Ayala competition predator–prey discrete system, Appl. Math. Comput.190 (2007) 500–509] and it can also be applied to study the global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present an open question.


Filomat ◽  
2018 ◽  
Vol 32 (13) ◽  
pp. 4665-4672
Author(s):  
Demou Luo ◽  
Hailin Liu

In this article, we investigate the global asymptotic stability of a reaction-diffusion system of predator-prey model. By applying the comparison principle and iteration method, we prove the global asymptotic stability of the unique positive equilibrium solution of (1.1).


2015 ◽  
Vol 08 (04) ◽  
pp. 1550044 ◽  
Author(s):  
Baodan Tian ◽  
Liu Yang ◽  
Shouming Zhong

In this paper, we study a stochastic predator–prey model with Beddington–DeAngelis functional response and Allee effect, and show that there is a unique global positive solution to the system with the positive initial value. Sufficient conditions for global asymptotic stability are established. Some simulation figures are introduced to support the analytical findings.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Changjin Xu ◽  
Yusen Wu

A Lotka-Volterra predator-prey model with time-varying delays is investigated. By using the differential inequality theory, some sufficient conditions which ensure the permanence and global asymptotic stability of the system are established. The paper ends with some interesting numerical simulations that illustrate our analytical predictions.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Hai-Feng Huo ◽  
Zhan-Ping Ma ◽  
Chun-Ying Liu

A generalized version of the Leslie-Gower predator-prey model that incorporates the prey structure and predator dispersal in two-patch environments is introduced. The focus is on the study of the boundedness of solution, permanence, and extinction of the model. Sufficient conditions for global asymptotic stability of the positive equilibrium are derived by constructing a Lyapunov functional. Numerical simulations are also presented to illustrate our main results.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Wensheng Yang

We study a diffusive predator-prey model with nonconstant death rate and general nonlinear functional response. Firstly, stability analysis of the equilibrium for reduced ODE system is discussed. Secondly, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. Furthermore, sufficient conditions for the global asymptotical stability of the unique positive equilibrium of the system are derived by using the method of Lyapunov function. Finally, we show that there are no nontrivial steady state solutions for certain parameter configuration.


2014 ◽  
Vol 971-973 ◽  
pp. 2234-2237
Author(s):  
Yong Po Zhang ◽  
Ming Juan Ma ◽  
Yue Shuang ◽  
Jia Hui Sun

In this paper we formulated and analyzed a predator-prey model with sparssing effect, analysis of the existing conditions of equilibrium point, and the sufficient condition of the local asymptotical stability of the equilibrium was studied with the method of latent root, and furthermore, by constructing a Liapunov function to get the boundary equilibrium and the positive equilibrium sufficient conditions for the globally asymptotical stability.


Author(s):  
Manh Tuan Hoang

In a previous paper [L. M. Ladino, E. I. Sabogal, Jose C. Valverde, General functional response and recruitment in a predator-prey system with capture on both species, Math. Methods Appl. Sci. 38(2015) 2876-2887], a mathematical model for a predator-prey model with general functional response and recruitment including capture on both species was formulated and analyzed. However, the global asymptotic stability (GAS) of this model was only partially resolved. In the present paper, we provide a rigorously mathematical analysis for the complete GAS of the predator-prey model. By using the Lyapunov stability theory in combination with some nonstandard techniques of mathematical analysis for dynamical systems, the GAS of equilibria of the model is determined fully. The obtained results not only provide an important improvement for the population dynamics of the predator-prey model but also can be extended to study its modified versions in the context of fractional-order derivatives. The theoretical results are supported and illustrated by a set of numerical examples.


Sign in / Sign up

Export Citation Format

Share Document