scholarly journals Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

2009 ◽  
Vol 2009 ◽  
pp. 1-4
Author(s):  
Kyo-Beum Lee ◽  
Frede Blaabjerg

This paper presents a new method to compensate the nonlinearity for matrix converter drives using disturbance observer. The nonlinearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modeled by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for high-performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show that the proposed method using disturbance observer provides good compensating characteristics.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 49377-49394 ◽  
Author(s):  
Qazwan A. Tarbosh ◽  
Omer Aydogdu ◽  
Nabil Farah ◽  
Md Hairul Nizam Talib ◽  
Adeeb Salh ◽  
...  

Author(s):  
Mohammad Jannati ◽  
Nik Rumzi Nik Idris ◽  
Mohd Junaidi Abdul Aziz ◽  
Tole Sutikno ◽  
M. Ghanbari

This paper proposes a novel vector control method based on Rotor flux Field-Oriented Control (RFOC) for single-phase Induction Motor (IM) drives. It is shown that in a rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with balanced structures. In order to accommodate for these forward and backward equations, a drive system consisting of two RFOCs that are switched interchangeably, is proposed. Alternatively, these two RFOC algorithms can be simplified as a single FOC algorithm. The analysis, controller design and simulation of the proposed technique showed that it is feasible for single-phase IM drive for high performance applications.


Sign in / Sign up

Export Citation Format

Share Document