scholarly journals High-performance vector control without AC phase current sensors for induction motor drives: Simulation and real-time implementation

Author(s):  
Younes Azzoug ◽  
Mohamed Sahraoui ◽  
Remus Pusca ◽  
Tarek Ameid ◽  
Raphaël Romary ◽  
...  
Author(s):  
Mohammad Jannati ◽  
Nik Rumzi Nik Idris ◽  
Mohd Junaidi Abdul Aziz ◽  
Tole Sutikno ◽  
M. Ghanbari

This paper proposes a novel vector control method based on Rotor flux Field-Oriented Control (RFOC) for single-phase Induction Motor (IM) drives. It is shown that in a rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with balanced structures. In order to accommodate for these forward and backward equations, a drive system consisting of two RFOCs that are switched interchangeably, is proposed. Alternatively, these two RFOC algorithms can be simplified as a single FOC algorithm. The analysis, controller design and simulation of the proposed technique showed that it is feasible for single-phase IM drive for high performance applications.


2018 ◽  
Vol 132 ◽  
pp. 971-982 ◽  
Author(s):  
Abderrahim Bennassar ◽  
Sandeep Banerjee ◽  
Mustapha Jamma ◽  
Adil Essalmi ◽  
Mohammed Akherraz

Author(s):  
Mohammad Jannati ◽  
Nik Rumzi Nik Idris ◽  
Mohd Junaidi Abdul Aziz ◽  
Tole Sutikno ◽  
M. Ghanbari

This paper proposes a novel vector control method based on Rotor flux Field-Oriented Control (RFOC) for single-phase Induction Motor (IM) drives. It is shown that in a rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with balanced structures. In order to accommodate for these forward and backward equations, a drive system consisting of two RFOCs that are switched interchangeably, is proposed. Alternatively, these two RFOC algorithms can be simplified as a single FOC algorithm. The analysis, controller design and simulation of the proposed technique showed that it is feasible for single-phase IM drive for high performance applications.


Sign in / Sign up

Export Citation Format

Share Document