scholarly journals Strong Convergence of Viscosity Iteration Methods for Nonexpansive Mappings

2009 ◽  
Vol 2009 ◽  
pp. 1-17
Author(s):  
Jong Soo Jung

We propose a new viscosity iterative scheme for finding fixed points of nonexpansive mappings in a reflexive Banach space having a uniformly Gâteaux differentiable norm and satisfying that every weakly compact convex subset of the space has the fixed point property for nonexpansive mappings. Certain different control conditions for viscosity iterative scheme are given and strong convergence of viscosity iterative scheme to a solution of a ceratin variational inequality is established.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Youli Yu

LetEbe a real reflexive Banach space with a uniformly Gâteaux differentiable norm. LetKbe a nonempty bounded closed convex subset ofE,and every nonempty closed convex bounded subset ofKhas the fixed point property for non-expansive self-mappings. Letf:K→Ka contractive mapping andT:K→Kbe a uniformly continuous pseudocontractive mapping withF(T)≠∅. Let{λn}⊂(0,1/2)be a sequence satisfying the following conditions: (i)limn→∞λn=0; (ii)∑n=0∞λn=∞. Define the sequence{xn}inKbyx0∈K,xn+1=λnf(xn)+(1−2λn)xn+λnTxn, for alln≥0. Under some appropriate assumptions, we prove that the sequence{xn}converges strongly to a fixed pointp∈F(T)which is the unique solution of the following variational inequality:〈f(p)−p,j(z−p)〉≤0, for allz∈F(T).



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Jong Soo Jung

LetEa reflexive Banach space having a uniformly Gâteaux differentiable norm. LetCbe a nonempty closed convex subset ofE,T:C→Ca continuous pseudocontractive mapping withF(T)≠∅, andA:C→Ca continuous bounded strongly pseudocontractive mapping with a pseudocontractive constantk∈(0,1). Let{αn}and{βn}be sequences in(0,1)satisfying suitable conditions and for arbitrary initial valuex0∈C, let the sequence{xn}be generated byxn=αnAxn+βnxn-1+(1-αn-βn)Txn,  n≥1.If either every weakly compact convex subset ofEhas the fixed point property for nonexpansive mappings orEis strictly convex, then{xn}converges strongly to a fixed point ofT, which solves a certain variational inequality related toA.



2019 ◽  
Vol 28 (2) ◽  
pp. 191-198
Author(s):  
T. M. M. SOW

It is well known that Krasnoselskii-Mann iteration of nonexpansive mappings find application in many areas of mathematics and know to be weakly convergent in the infinite dimensional setting. In this paper, we introduce and study an explicit iterative scheme by a modified Krasnoselskii-Mann algorithm for approximating fixed points of multivalued quasi-nonexpansive mappings in Banach spaces. Strong convergence of the sequence generated by this algorithm is established. There is no compactness assumption. The results obtained in this paper are significant improvement on important recent results.



2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yuanheng Wang

In the framework of a real Banach space with uniformly Gateaux differentiable norm, some new viscosity iterative sequences{xn}are introduced for an infinite family of asymptotically nonexpansive mappingsTii=1∞in this paper. Under some appropriate conditions, we prove that the iterative sequences{xn}converge strongly to a common fixed point of the mappingsTii=1∞, which is also a solution of a variational inequality. Our results extend and improve some recent results of other authors.





2004 ◽  
Vol 2004 (37) ◽  
pp. 1965-1971 ◽  
Author(s):  
Hafiz Fukhar-ud-din ◽  
Safeer Hussain Khan

A two-step iterative scheme with errors has been studied to approximate the common fixed points of two asymptotically nonexpansive mappings through weak and strong convergence in Banach spaces.



2002 ◽  
Vol 31 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Wei-Shih Du ◽  
Young-Ye Huang ◽  
Chi-Lin Yen

It is shown that every asymptotically regular orλ-firmly nonexpansive mappingT:C→Chas a fixed point wheneverCis a finite union of nonempty weakly compact convex subsets of a Banach spaceXwhich is uniformly convex in every direction. Furthermore, if{T i}i∈Iis any compatible family of strongly nonexpansive self-mappings on such aCand the graphs ofT i,i∈I, have a nonempty intersection, thenT i,i∈I, have a common fixed point inC.



2013 ◽  
Vol 21 (1) ◽  
pp. 183-200
Author(s):  
Prasit Cholamjiak ◽  
Yeol Je Cho ◽  
Suthep Suantai

Abstract In this paper, we first prove a path convergence theorem for a nonexpansive mapping in a reflexive and strictly convex Banach space which has a uniformly Gˆateaux differentiable norm and admits the duality mapping jφ, where φ is a gauge function on [0,∞). Using this result, strong convergence theorems for common fixed points of a countable family of nonexpansive mappings are established.



2013 ◽  
Vol 756-759 ◽  
pp. 3628-3633
Author(s):  
Yuan Heng Wang ◽  
Wei Wei Sun

In a real Banach space E with a uniformly differentiable norm, we prove that a new iterative sequence converges strongly to a fixed point of an asymptotically nonexpansive mapping. The results in this paper improve and extend some recent results of other authors.



Sign in / Sign up

Export Citation Format

Share Document