scholarly journals Networks-On-Chip Based on Dynamic Wormhole Packet Identity Mapping Management

VLSI Design ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Faizal A. Samman ◽  
Thomas Hollstein ◽  
Manfred Glesner

This paper presents a network-on-chip (NoC) with flexible infrastructure based on dynamic wormhole packet identity management. The NoCs are developed based on a VHDL approach and support the design flexibility. The on-chip router uses a wormhole packet switching method with a synchronous parallel pipeline technique. Routing algorithms and dynamic wormhole local packet identity (ID-tag) mapping management are proposed to support a wire sharing methodology and an ID slot division multiplexing technique. At each communication link, flits belonging to the same message have the same local ID-tag, and the ID-tag is updated before the packet enters the next communication link by using an ID-tag mapping management unit. Therefore, flits from different messages can be interleaved, identified, and routed according to their allocated ID slots. Our NoC guarantees in order and lossless message delivery.

2016 ◽  
Vol 25 (06) ◽  
pp. 1650065 ◽  
Author(s):  
Saleh Fakhrali ◽  
Hamid R. Zarandi

Reliability is one of the main concerns in the design of networks-on-chip (NoCs) due to the use of deep submicron technologies in fabrication of such products. This paper presents a new fault-tolerant routing algorithm called double stairs for NoCs. Double stairs routing algorithm is a low overhead routing that has the ability to deal with fault. The proposed routing algorithm makes a redundant copy of each packet at the source node and routes the original and redundant packets in a new partially adaptive routing algorithm. The method is evaluated for various packet injection rates and fault rates. Experimental results show that the proposed routing algorithm offers the best trade-off between performance and fault tolerance compared to other routing algorithms, namely flooding, XYX and probabilistic flooding.


Author(s):  
Reyhaneh Jabbarvand Behrouz ◽  
Mehdi Modarressi ◽  
Hamid Sarbazi-Azad

Sign in / Sign up

Export Citation Format

Share Document