scholarly journals Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
F. Soleymani

This paper contributes a very general class of two-point iterative methods without memory for solving nonlinear equations. The class of methods is developed using weight function approach. Per iteration, each method of the class includes two evaluations of the function and one of its first-order derivative. The analytical study of the main theorem is presented in detail to show the fourth order of convergence. Furthermore, it is discussed that many of the existing fourth-order methods without memory are members from this developed class. Finally, numerical examples are taken into account to manifest the accuracy of the derived methods.

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1221 ◽  
Author(s):  
Raudys R. Capdevila ◽  
Alicia Cordero ◽  
Juan R. Torregrosa

In this work, a new class of iterative methods for solving nonlinear equations is presented and also its extension for nonlinear systems of equations. This family is developed by using a scalar and matrix weight function procedure, respectively, getting sixth-order of convergence in both cases. Several numerical examples are given to illustrate the efficiency and performance of the proposed methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Fazlollah Soleymani ◽  
Solat Karimi Vanani ◽  
Abtin Afghani

Many of the engineering problems are reduced to solve a nonlinear equation numerically, and as a result, an especial attention to suggest efficient and accurate root solvers is given in literature. Inspired and motivated by the research going on in this area, this paper establishes an efficient general class of root solvers, where per computing step, three evaluations of the function and one evaluation of the first-order derivative are used to achieve the optimal order of convergence eight. The without-memory methods from the developed class possess the optimal efficiency index 1.682. In order to show the applicability and validity of the class, some numerical examples are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We develop a family of fourth-order iterative methods using the weighted harmonic mean of two derivative functions to compute approximate multiple roots of nonlinear equations. They are proved to be optimally convergent in the sense of Kung-Traub’s optimal order. Numerical experiments for various test equations confirm well the validity of convergence and asymptotic error constants for the developed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


2018 ◽  
Vol 14 (1) ◽  
pp. 179-187
Author(s):  
Jivandhar Jnawali ◽  
Chet Raj Bhatta

 The main purpose of this paper is to derive two higher order iterative methods for solving nonlinear equations as variants of Mir, Ayub and Rafiq method. These methods are free from higher order derivatives. We obtain these methods by amalgamating Mir, Ayub and Rafiq method with standard secant method and modified secant method given by Amat and Busquier. The order of convergence of new variants are four and six. Also, numerical examples are given to compare the performance of newly introduced methods with the similar existing methods. 2010 AMS Subject Classification: 65H05 Journal of the Institute of Engineering, 2018, 14(1): 179-187


2021 ◽  
Vol 2 (1) ◽  
pp. 17-24
Author(s):  
Jivandhar Jnawali

In this work, we present two Newton type iterative methods for finding the solution of nonlinear equations of single variable. One is obtained as variant of McDougall and Wotherspoon method, and another is obtained by amalgamation of Potra and Pta’k method and our newly introduced method. The order of convergence of these methods are 1 + √2 and 3.5615. Some numerical examples are given to compare the performance of these methods with some similar existing methods.


Sign in / Sign up

Export Citation Format

Share Document