scholarly journals Three New Optimal Fourth-Order Iterative Methods to Solve Nonlinear Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.

2013 ◽  
Vol 18 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Baoqing Liu ◽  
Xiaojian Zhou

Recently, some optimal fourth-order iterative methods for multiple roots of nonlinear equations are presented when the multiplicity m of the root is known. Different from these optimal iterative methods known already, this paper presents a new family of iterative methods using the modified Newton’s method as its first step. The new family, requiring one evaluation of the function and two evaluations of its first derivative, is of optimal order. Numerical examples are given to suggest that the new family can be competitive with other fourth-order methods and the modified Newton’s method for multiple roots.


2012 ◽  
Vol 220-223 ◽  
pp. 2658-2661
Author(s):  
Zhong Yong Hu ◽  
Liang Fang ◽  
Lian Zhong Li

We present a new modified Newton's method with third-order convergence and compare it with the Jarratt method, which is of fourth-order. Based on this new method, we obtain a family of Newton-type methods, which converge cubically. Numerical examples show that the presented method can compete with Newton's method and other known third-order modifications of Newton's method.


2017 ◽  
Vol 12 (1) ◽  
pp. 87-95
Author(s):  
Jivandhar Jnawali

The aim of this paper is to propose a fourth-order Newton type iterative method for solving nonlinear equations in a single variable. We obtained this method by combining the iterations of contra harmonic Newton’s method with secant method. The proposed method is free from second order derivative. Some numerical examples are given to illustrate the performance and to show this method’s advantage over other compared methods.Journal of the Institute of Engineering, 2016, 12 (1): 87-95


2017 ◽  
Vol 10 (1) ◽  
pp. 144-150 ◽  
Author(s):  
V.B Vatti ◽  
Ramadevi Sri ◽  
M.S Mylapalli

In this paper, we suggest and discuss an iterative method for solving nonlinear equations of the type f(x)=0 having eighteenth order convergence. This new technique based on Newton’s method and extrapolated Newton’s method. This method is compared with the existing ones through some numerical examples to exhibit its superiority. AMS Subject Classification: 41A25, 65K05, 65H05.


2015 ◽  
Vol 34 (2) ◽  
pp. 197-211
Author(s):  
D. Sbibih ◽  
Abdelhafid Serghini ◽  
A. Tijini ◽  
A. Zidna

In this paper, we describe an iterative method for approximating asimple zero $z$ of a real defined function. This method is aessentially based on the idea to extend Newton's method to be theinverse quadratic interpolation. We prove that for a sufficientlysmooth function $f$ in a neighborhood of $z$ the order of theconvergence is quartic. Using Mathematica with its high precisioncompatibility, we present some numerical examples to confirm thetheoretical results and to compare our method with the others givenin the literature.


2011 ◽  
Vol 60 (2) ◽  
pp. 145-159 ◽  
Author(s):  
Marcin Ligas ◽  
Piotr Banasik

Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equationsA new method to transform from Cartesian to geodetic coordinates is presented. It is based on the solution of a system of nonlinear equations with respect to the coordinates of the point projected onto the ellipsoid along the normal. Newton's method and a modification of Newton's method were applied to give third-order convergence. The method developed was compared to some well known iterative techniques. All methods were tested on three ellipsoidal height ranges: namely, (-10 - 10 km) (terrestrial), (20 - 1000 km), and (1000 - 36000 km) (satellite). One iteration of the presented method, implemented with the third-order convergence modified Newton's method, is necessary to obtain a satisfactory level of accuracy for the geodetic latitude (σφ < 0.0004") and height (σh< 10-6km, i.e. less than a millimetre) for all the heights tested. The method is slightly slower than the method of Fukushima (2006) and Fukushima's (1999) fast implementation of Bowring's (1976) method.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We develop a family of fourth-order iterative methods using the weighted harmonic mean of two derivative functions to compute approximate multiple roots of nonlinear equations. They are proved to be optimally convergent in the sense of Kung-Traub’s optimal order. Numerical experiments for various test equations confirm well the validity of convergence and asymptotic error constants for the developed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Young Ik Kim ◽  
Young Hee Geum

We construct a biparametric family of fourth-order iterative methods to compute multiple roots of nonlinear equations. This method is verified to be optimally convergent. Various nonlinear equations confirm our proposed method with order of convergence of four and show that the computed asymptotic error constant agrees with the theoretical one.


Sign in / Sign up

Export Citation Format

Share Document