scholarly journals Onp-Convergence in Measure of a Sequence of Measurable Functions

2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
A. Boccuto ◽  
Ch. Papachristodoulos ◽  
N. Papanastassiou

In the study by Papanastassiou and Papachristodoulos, 2009 the notion ofp-convergence in measure was introduced. In a natural wayp-convergence in measure induces an equivalence relation on the spaceMof all sequences of measurable functions converging in measure to zero. We show that the quotient spaceℳis a complete but not compact metric space.

1966 ◽  
Vol 18 ◽  
pp. 1264-1271 ◽  
Author(s):  
N. Friedman ◽  
M. Katz

In (1) a representation theorem was proved for a class of additive functionals defined on the continuous real-valued functions with domain S = [0, 1]. The theorem was extended to the case where S is an arbitrary compact metric space in (3). Our present purpose is to consider the corresponding class of additive functionals defined on Lp spaces, p > 0. In (4) Martin and Mizel have considered functionals defined on the class of bounded measurable functions which, however, satisfy a certain “stochastic” condition which we do not require.


2004 ◽  
Vol 95 (2) ◽  
pp. 305
Author(s):  
Herman Render ◽  
Lothar Rogge

We introduce the new concept of pointwise measurability. It is shown in this paper that a measurable function is measurable at each point and that for a large class of topological spaces the converse also holds. Moreover it can be seen that a function which is continuous at a point is Borel-measurable at this point too. Furthermore the set of measurability points is considered. If the range space is a $\sigma$-compact metric space, then this set is a $G_{\delta}$-set; if the range space is only a Polish space this is in general not true any longer.


2021 ◽  
Vol 40 (3) ◽  
pp. 5517-5526
Author(s):  
Ömer Kişi

We investigate the concepts of pointwise and uniform I θ -convergence and type of convergence lying between mentioned convergence methods, that is, equi-ideally lacunary convergence of sequences of fuzzy valued functions and acquire several results. We give the lacunary ideal form of Egorov’s theorem for sequences of fuzzy valued measurable functions defined on a finite measure space ( X , M , μ ) . We also introduce the concept of I θ -convergence in measure for sequences of fuzzy valued functions and proved some significant results.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


1980 ◽  
Vol 17 (1) ◽  
pp. 297-299
Author(s):  
Arun P. Sanghvi

This paper describes some sufficient conditions that ensure the convergence of successive random applications of a family of mappings {Γα : α ∈ A} on a compact metric space (X, d) to a stochastic fixed point. The results are similar in spirit to a recent result of Yahav (1975).


2001 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
Francisco Balibrea ◽  
J.S. Cánovas ◽  
A. Linero

<p>We present some results concerning the topological dynamics of antitriangular maps, F:X<sup>2</sup>→ X<sup>2 </sup>with the formvF(x,y)=(g(y),f(x)), where (X,d) is a compact metric space and f,g : X→ X are continuous maps. We make an special analysis in the case of X = [0,1].</p>


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document