scholarly journals Basal and Frontal Accretion Processes versus BSR Characteristics along the Chilean Margin

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
I. Vargas-Cordero ◽  
U. Tinivella ◽  
F. Accaino ◽  
F. Fanucci ◽  
M. F. Loreto ◽  
...  

Multichannel seismic reflection data recorded between Itata (36°S) and Coyhaique offshores (43°S) were processed to obtain seismic images. Analysis of the seismic profiles revealed that weak and discontinuous bottom simulating reflectors were associated to basal accretion processes, while strong and continuous bottom simulating reflectors were associated to frontal accretion processes. This can be explained considering that during basal accretion processes, extensional tectonic movements due to uplifting can favour fluid escapes giving origin to weaker and most discontinuous bottom simulating reflectors. During frontal accretion processes (folding and thrusting), high fluid circulation and stable tectonic conditions however can be responsible of stronger and most continuous bottom simulating reflectors. Along the Arauco-Valdivia offshores, steep accretionary prisms, normal faults, slope basins, and thicker underplated sediment bed were associated to basal accretion, while along the Itata, Chiloe and Coyhaique offshores, small accretionary prisms, folding, and thinner underplated sediment bed were associated to frontal accretion.

2020 ◽  
Author(s):  
Fabrizio Pepe ◽  
Mor Kanari ◽  
Pierfrancesco Burrato ◽  
Marta Corradino ◽  
Henrique Duarte ◽  
...  

<p>An ultra-resolution, multichannel seismic reflection data set was collected during an oceanographic cruise organised in the frame of the “<em>Earthquake Potential of Active Faults using offshore Geological and Morphological Indicators</em>” (EPAF) project, which was founded by the Scientific and Technological Cooperation (Scientific Track 2017) between the Italian Ministry of Foreign Affairs and International Cooperation and the Ministry of Science, Technology and Space of the State of Israel. The data acquisition approach was based on innovative technologies for the offshore imaging of stratigraphy and structures along continental margins with a horizontal and vertical resolution at decimetric scale. In this work, we present the methodology used for the 2D HR-seismic reflection data acquisition and the preliminary interpretation of the data set. The 2D seismic data were acquired onboard the R/V Atlante by using an innovative data acquisition equipment composed by a dual-sources Sparker system and one HR 48-channel, slant streamers, with group spacing variable from 1 to 2 meters, at 10 kHz sampling rate. An innovative navigation system was used to perform all necessary computations to determining real-time positions of sources and receivers. The resolution of the seismic profiles obtained from this experiment is remarkable high respect to previously acquired seismic data for both scientific and industrial purposes. In addition to the seismic imaging, gravity core data were also collected for sedimentological analysis and to give a chronological constraint using radiocarbon datings to the shallower reflectors. The investigated area is located in the western offshore sector of the Calabrian Arc (southern Tyrrhenian Sea) where previous research works, based on multichannel seismic profiles coupled with Chirp profiles, have documented the presence of an active fault system. One of the identified faults was tentatively considered as the source of the Mw 7, 8 September 1905 seismic event that hit with highest macroseismic intensities the western part of central Calabria, and was followed by a tsunami that inundated the coastline between Capo Vaticano and the Angitola plain. On this basis, the earthquake was considered to have a source at sea, but so far, the location, geometry and kinematics of the causative fault are still poorly understood. In this study we provide preliminary results of the most technologically advanced ultra-high-resolution geophysical method used to reveal the 3D faulting pattern, the late Quaternary slip rate and the earthquake potential of the marine fault system located close to the densely populated west coast of Calabria.</p>


2012 ◽  
Vol 51 (4) ◽  
Author(s):  
William L. Bandy ◽  
Carlos A. Montera-Gutiérrez

Evidencia de la presencia de hidratos de gas en forma de reflector que simula el fondo marino (BRS) es observado en un perfil sísmico multicanal, México. Los reflectores son encontrados a 0.4 segundos (en el tiempo de viaje doble) bajo el reflector del fondo marino y se extiende a lo largo de 7 km del perfil. Este resultado aunado a otros resultados previos en la parte norte de la zona de subducción de Jalisco sugiere que los hidratos de gas pudieran existir en la región del talud continental de toda la zona de subducción de Jalisco, sin embargo se necesitan mas datos de reflexión sísmica para verificar esta aseveración.


Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. B29-B40 ◽  
Author(s):  
Eusebio Stucchi ◽  
Francesco Mirabella ◽  
Maria Grazia Ciaccio

Seismic reflection data are used to reconstruct the subsurface geologic structures below the Umbria-Marche region in Italy, a highly seismogenic area with a recent history of seismic activity (the 1997–1998 Colfiorito sequence). We reprocess three vibroseis seismic profiles (acquired in the early 1980s for hydrocarbon exploration) whose stacked sections were optimized for relatively deep oil targets. On the reprocessed seismic profile closest to the epicentral area, we construct the main reflectors to a depth of about 4 s (two-way time) and compare this interpretation with the available hypocenters of the 1997 earthquakes. The improvements in visualizing the shallow and deep reflections provide a better correlation between the reflectors and the observed surface structures as well as a better delineation of the basement-rock geometry. We find that part of the Colfiorito sequence is localized around some of the reflectors in the reflection profile, which we interpret as related to the active normal faults that outcrop at the surface.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Oh Park ◽  
Naoto Takahata ◽  
Ehsan Jamali Hondori ◽  
Asuka Yamaguchi ◽  
Takanori Kagoshima ◽  
...  

AbstractPlate bending-related normal faults (i.e. bend-faults) develop at the outer trench-slope of the oceanic plate incoming into the subduction zone. Numerous geophysical studies and numerical simulations suggest that bend-faults play a key role by providing pathways for seawater to flow into the oceanic crust and the upper mantle, thereby promoting hydration of the oceanic plate. However, deep penetration of seawater along bend-faults remains controversial because fluids that have percolated down into the mantle are difficult to detect. This report presents anomalously high helium isotope (3He/4He) ratios in sediment pore water and seismic reflection data which suggest fluid infiltration into the upper mantle and subsequent outflow through bend-faults across the outer slope of the Japan trench. The 3He/4He and 4He/20Ne ratios at sites near-trench bend-faults, which are close to the isotopic ratios of bottom seawater, are almost constant with depth, supporting local seawater inflow. Our findings provide the first reported evidence for a potentially large-scale active hydrothermal circulation system through bend-faults across the Moho (crust-mantle boundary) in and out of the oceanic lithospheric mantle.


2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

<p>In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) – large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin – Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamień-Adler and the Trzebiatów fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous – earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.</p><p>This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.</p>


Sign in / Sign up

Export Citation Format

Share Document