scholarly journals Active deformation evidence in the offshore of western Calabria (southern Tyrrhenian Sea) from ultra-resolution multichannel seismic reflection data: results from the Gulf of Sant'Eufemia

Author(s):  
Fabrizio Pepe ◽  
Mor Kanari ◽  
Pierfrancesco Burrato ◽  
Marta Corradino ◽  
Henrique Duarte ◽  
...  

<p>An ultra-resolution, multichannel seismic reflection data set was collected during an oceanographic cruise organised in the frame of the “<em>Earthquake Potential of Active Faults using offshore Geological and Morphological Indicators</em>” (EPAF) project, which was founded by the Scientific and Technological Cooperation (Scientific Track 2017) between the Italian Ministry of Foreign Affairs and International Cooperation and the Ministry of Science, Technology and Space of the State of Israel. The data acquisition approach was based on innovative technologies for the offshore imaging of stratigraphy and structures along continental margins with a horizontal and vertical resolution at decimetric scale. In this work, we present the methodology used for the 2D HR-seismic reflection data acquisition and the preliminary interpretation of the data set. The 2D seismic data were acquired onboard the R/V Atlante by using an innovative data acquisition equipment composed by a dual-sources Sparker system and one HR 48-channel, slant streamers, with group spacing variable from 1 to 2 meters, at 10 kHz sampling rate. An innovative navigation system was used to perform all necessary computations to determining real-time positions of sources and receivers. The resolution of the seismic profiles obtained from this experiment is remarkable high respect to previously acquired seismic data for both scientific and industrial purposes. In addition to the seismic imaging, gravity core data were also collected for sedimentological analysis and to give a chronological constraint using radiocarbon datings to the shallower reflectors. The investigated area is located in the western offshore sector of the Calabrian Arc (southern Tyrrhenian Sea) where previous research works, based on multichannel seismic profiles coupled with Chirp profiles, have documented the presence of an active fault system. One of the identified faults was tentatively considered as the source of the Mw 7, 8 September 1905 seismic event that hit with highest macroseismic intensities the western part of central Calabria, and was followed by a tsunami that inundated the coastline between Capo Vaticano and the Angitola plain. On this basis, the earthquake was considered to have a source at sea, but so far, the location, geometry and kinematics of the causative fault are still poorly understood. In this study we provide preliminary results of the most technologically advanced ultra-high-resolution geophysical method used to reveal the 3D faulting pattern, the late Quaternary slip rate and the earthquake potential of the marine fault system located close to the densely populated west coast of Calabria.</p>

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1434-1450 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

A comprehensive strategy of 3-D seismic reflection data acquisition and processing has been used in a study of glacial sediments deposited within a Swiss mountain valley. Seismic data generated by a downhole shotgun source were recorded with single 30-Hz geophones distributed at 3 m × 3 m intervals across a 357 m × 432 m area. For most common‐midpoint (CMP) bins, traces covering a full range of azimuths and source‐receiver distances of ∼2 to ∼125 m were recorded. A common processing scheme was applied to the entire data set and to various subsets designed to simulate data volumes collected with lower density source and receiver patterns. Comparisons of seismic sections extracted from the processed 3-D subsets demonstrated that high‐fold (>40) and densely spaced (CMP bin sizes ⩽ 3 m × 3 m) data with relatively large numbers (>6) of traces recorded at short (<20 m) source‐receiver offsets were essential for obtaining clear images of the shallowest (<100 ms) reflecting horizons. Reflections rich in frequencies >100 Hz at traveltimes of ∼20 to ∼170 ms provided a vertical resolution of 3 to 6 m over a depth range of ∼15 to ∼150 m. The shallowest prominent reflection at 20 to 35 ms (∼15 to 27 m depth) originated from the boundary between a near‐surface sequence of clays/silts and an underlying unit of heterogeneous sands/gravels.


1990 ◽  
Vol 95 (B6) ◽  
pp. 8753 ◽  
Author(s):  
G. F. Moore ◽  
T. H. Shipley ◽  
P. L. Stoffa ◽  
D. E. Karig ◽  
A. Taira ◽  
...  

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


2021 ◽  
Author(s):  
Piotr Krzywiec ◽  
Łukasz Słonka ◽  
Quang Nguyen ◽  
Michał Malinowski ◽  
Mateusz Kufrasa ◽  
...  

&lt;p&gt;In 2016, approximately 850 km of high-resolution multichannel seismic reflection data of the BALTEC survey have been acquired offshore Poland within the transition zone between the East European Craton and the Paleozoic Platform. Data processing, focused on removal of multiples, strongly overprinting geological information at shallower intervals, included SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow Water De-Multiple). Entire dataset was Kirchhoff pre-stack time migrated. Additionally, legacy shallow high-resolution multichannel seismic reflection data acquired in this zone in 1997 was also used. All this data provided new information on various aspects of the Phanerozoic evolution of this area, including Late Cretaceous to Cenozoic tectonics and sedimentation. This phase of geological evolution could be until now hardly resolved by analysis of industry seismic data as, due to limited shallow seismic imaging and very strong overprint of multiples, essentially no information could have been retrieved from this data for first 200-300 m. Western part of the BALTEC dataset is located above the offshore segment of the Mid-Polish Swell (MPS) &amp;#8211; large anticlinorium formed due to inversion of the axial part of the Polish Basin. BALTEC seismic data proved that Late Cretaceous inversion of the Koszalin &amp;#8211; Chojnice fault zone located along the NE border of the MPS was thick-skinned in nature and was associated with substantial syn-inversion sedimentation. Subtle thickness variations and progressive unconformities imaged by BALTEC seismic data within the Upper Cretaceous succession in vicinity of the Kamie&amp;#324;-Adler and the Trzebiat&amp;#243;w fault zones located within the MPS documented complex interplay of Late Cretaceous basin inversion, erosion and re-deposition. Precambrian basement of the Eastern, cratonic part of the study area is overlain by Cambro-Silurian sedimentary cover. It is dissected by a system of steep, mostly reverse faults rooted in most cases in the deep basement. This fault system has been regarded so far as having been formed mostly in Paleozoic times, due to the Caledonian orogeny. As a consequence, Upper Cretaceous succession, locally present in this area, has been vaguely defined as a post-tectonic cover, locally onlapping uplifted Paleozoic blocks. New seismic data, because of its reliable imaging of the shallowest substratum, confirmed that at least some of these deeply-rooted faults were active as a reverse faults in latest Cretaceous &amp;#8211; earliest Paleogene. Consequently, it can be unequivocally proved that large offshore blocks of Silurian and older rocks presently located directly beneath the Cenozoic veneer must have been at least partly covered by the Upper Cretaceous succession; then, they were uplifted during the widespread inversion that affected most of Europe. Ensuing regional erosion might have at least partly provided sediments that formed Upper Cretaceous progradational wedges recently imaged within the onshore Baltic Basin by high-end PolandSPAN regional seismic data. New seismic data imaged also Paleogene and younger post-inversion cover. All these results prove that Late Cretaceous tectonics substantially affected large areas located much farther towards the East than previously assumed.&lt;/p&gt;&lt;p&gt;This study was funded by the Polish National Science Centre (NCN) grant no UMO-2017/27/B/ST10/02316.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document