tyrrhenian sea
Recently Published Documents


TOTAL DOCUMENTS

1150
(FIVE YEARS 260)

H-INDEX

55
(FIVE YEARS 9)

Author(s):  
Michele Lustrino ◽  
Claudio Chiarabba ◽  
Eugenio Carminati

ABSTRACT The Pliocene–Quaternary igneous record of the Tyrrhenian Sea area features a surprisingly large range of compositions from subalkaline to ultra-alkaline and from ultrabasic to acid. These rocks, emplaced within the basin and along its margins, are characterized by strongly SiO2-undersaturated and CaO-rich to strongly SiO2-oversaturated and peraluminous compositions, with sodic to ultrapotassic alkaline and tholeiitic to calc-alkaline and high-K calc-alkaline affinities. We focused on the different models proposed to explain the famous Roman Comagmatic Region, part of the Quaternary volcanism that spreads along the eastern side of the Tyrrhenian area, in the stretched part of the Apennines thrust-and-fold belt. We reviewed data and hypotheses proposed in the literature that infer active to fossil subduction up to models that exclude subduction entirely. Many field geology observations sustain the interpretation that the evolution of the Tyrrhenian-Apennine system was related to subduction of the western margin of Adria continental lithosphere after minor recycling of oceanic lithosphere. However, the lateral extent of the subducting slab in the last millions of years, when magmatism flared up, remains debatable. The igneous activity that developed in the last millions of years along the Tyrrhenian margin is here explained as originating from a subduction-modified mantle, regardless of whether the large-scale subduction system is still active.


2022 ◽  
Vol 9 ◽  
Author(s):  
Elena Scacchia ◽  
Roberto Tinterri ◽  
Fabiano Gamberi

Overbank deposits provide a potentially valuable record of flows that have passed through a submarine channel. The architecture of overbank deposits has generally assumed to relate to autogenic processes related to channel construction. In previous models, which are largely based on passive margins, the distribution and geometry of these deposits is relatively simple, and hence generally predictable. Here, we show how the interaction of different flow types with the complex morphology on a highly-tectonically modified margin can profoundly affect overbank depositional processes, and hence also the resultant deposit geometry and architecture. Our case study is the Acquarone Fan, located in the intraslope Gioia Basin in the south-eastern Tyrrhenian Sea, whose topography is mainly controlled by the presence of the Acquarone structural ridge, which results in the confinement of the left south-west side of the channel-levee system. The research is carried out through analysis of multibeam bathymetric and high-resolution Chirp sub-bottom profiler data. Seven depositional units (Units I-VII) record the recent depositional history of the fan; their thickness has been mapped and their parent flow-types have been interpreted through their seismic response. According to unit thickness maps, two main patterns of deposition are recognized in the overbank area. Their depocenters coincide with different extensive sediment wave fields developed in specific tracts of the right levee and in the frontal splay area. We show that the location of the depocenters varies in time according to the prevalent flow-type and by its interaction with the surrounding seafloor topography and channel planform. We interpret that the lateral confinement of the channel by the structural high generates episodic rebound of the overspilling flow and the inversion of the channel asymmetry. The vertical stratification of the flow strongly influences the overbank deposition where the channel planform has a non-linear shape such as bends and knick-points. In particular, the vertical stratification influences the hydraulic jump size that conditions the amount of overspill and thus the location of overbank depocenters. This study highlights that variations in the sediment distribution and composition on the overbank can be related to the way different flows interact with tectonic setting.


Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Felix Ivo Rossbach ◽  
Benedikt Merk ◽  
Christian Wild

The Mediterranean Sea comprises habitats such as Posidonia oceanica seagrass meadows that exhibit high associated biodiversity of sessile organisms. Recent pilot research indicates that benthic mats formed by the scarcely investigated fleshy red alga Phyllophora crispa also host a high diversity of benthic fauna. Among the key taxa found in these mats in the recent pilot studies are benthic foraminifera that live as epiphytes on the red algae thalli. Knowledge about their abundance and species richness associated with this habitat in relation to reference habitats is missing. We thus carried out a comparative assessment focusing on foraminifera within samples from P. crispa mats and neighboring P. oceanica meadows on five different sampling sites around Giglio Island in the Tuscan Archipelago (Tyrrhenian Sea, Italy). A total of 104 different foraminiferal taxa were identified, of which a total of 85 taxa were found in P. crispa samples (46 exclusively in this habitat). This biodiversity was higher compared to other studies on phytal habitats in the Mediterranean Sea. The number of foraminiferal taxa associated with P. crispa was significantly higher (average 27.5 ± 8.1 taxa) compared to P. oceanica (leaves average 7.0 ± 3.6, shoots average 7.9 ± 3.4 taxa). The abundance of foraminifera (12,000 individuals m−2 surface area of P. crispa mat) was also higher than in the neighboring P. oceanica meadows (7792 individuals m−2 leaf and 8171 individuals m−2 shoot surface area). The most frequently found taxa across habitats were Miniacina miniacea, Lobatula lobatula, and Sejunctella sp. (24%, 20%, and 6% of the total population, respectively). Our results imply that P. crispa mats host an exceptional diversity of associated foraminifera that is even higher than those associated with seagrass meadows. Red algae mats built by P. crispa may thus be considered as potential refuge habitats and biodiversity reservoirs in management and conservation.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Giovanni Chimienti ◽  
Ricardo Aguilar ◽  
Michela Maiorca ◽  
Francesco Mastrototaro

Coral forests are vulnerable marine ecosystems formed by arborescent corals (e.g., Anthozoa of the orders Alcyonacea and Antipatharia). The population structure of the habitat-forming corals can inform on the status of the habitat, representing an essential aspect to monitor. Most Mediterranean corals live in the mesophotic and aphotic zones, and their population structures can be assessed by analyzing images collected by underwater vehicles. This is still not possible in whip-like corals, whose colony lengths and flexibilities impede the taking of direct length measurements from images. This study reports on the occurrence of a monospecific forest, of the whip coral Viminella flagellum in the Aeolian Archipelago (Southern Tyrrhenian Sea; 149 m depth), and the assessment of its population structure through an ad-hoc, non-invasive method to estimate a colony height based on its width. The forest of V. flagellum showed a mean density of 19.4 ± 0.2 colonies m−2 (up to 44.8 colonies m−2) and no signs of anthropogenic impacts. The population was dominated by young colonies, with the presence of large adults and active recruitment. The new model proved to be effective for non-invasive monitoring of this near threatened species, representing a needed step towards appropriate conservation actions.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Serena Santonicola ◽  
Michela Volgare ◽  
Emilia Di Pace ◽  
Mariacristina Cocca ◽  
Raffaelina Mercogliano ◽  
...  

There is a global concern over the impact of microplastics on marine species and trophic webs. Microfibers commonly represent the greater portion of microplastics in the aquatic environment, but little is known about fiber uptake and accumulation by marine biota. The aim of the study was to investigate the potential plastic microfiber contamination in mussels (Mytilus galloprovincialis) and anchovies (Engraulis encrasicolus) from the Tyrrhenian Sea sold for human consumption. Anthropogenic debris was extracted from the digestive tracts of fish and the whole shellfish using a 10% KOH solution and quantified under a light microscope. The preliminary results showed the occurrence of potential plastic and natural microfibers in 73% of the samples. On average mussels contained 1.33 microfibers/g w.w. and 7.66 items/individual, while anchovies contained 9.06 microfibers/individual. Considering that mussels are consumed as a whole, and small pelagic fish, as anchovy, may be eaten without removing the gastrointestinal tract, microfiber contamination may lead to human exposure. More research is required to adequately assess the risk that microplastics, including microfibers, may pose for food safety and human health.


2021 ◽  
Vol 21 (12) ◽  
pp. 3809-3825
Author(s):  
Gaia Mattei ◽  
Diana Di Luccio ◽  
Guido Benassai ◽  
Giorgio Anfuso ◽  
Giorgio Budillon ◽  
...  

Abstract. Destructive marine storms bring large waves and unusually high surges of water to coastal areas, resulting in significant damages and economic loss. This study analyses the characteristics of a destructive marine storm on the strongly inhabited coastal area of Gulf of Naples, along the Italian coasts of the Tyrrhenian Sea. This is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. The marine storm, which occurred on 28 December 2020, was analyzed through an unstructured wind–wave coupled model that takes into account the main marine weather components of the coastal setup. The model, validated with in situ data, allowed the establishment of threshold values for the most significant marine and atmospheric parameters (i.e., wind intensity and duration) beyond which an event can produce destructive effects. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Florian Kokoszka ◽  
Daniele Iudicone ◽  
Adriana Zingone ◽  
Vincenzo Saggiomo ◽  
Maurizio Ribera D'Alcalá ◽  
...  

This is a short communication about the inter-annual recurring presence at the coastal site in the Gulf of Naples of density staircases visible below the mixed surface layer of the water-column, from the end of summer to the beginning of winter, each year during nearly two decades of survey (2001 to 2020). We repetitively observe sequences from 1 to 4 small vertical staircases structures (~ 3 m thick) in the density profiles (~ Δ0.2 kg.m-3), located between 10 m to 50 m deep below the seasonal mixed layer depth. We interpret these vertical structures as the result of double diffusive processes that could host salt-fingering regime (SF) due to warm salty water parcels overlying on relatively fresher and colder layers. This common feature of the Mediterranean basin (i.e., the thermohaline staircases of the Tyrrhenian sea) may sign here for the lateral intrusions of nearshore water masses. These stably stratified layers are characterized by density ratio Rρ 5.0 to 10.0, slightly higher than the critical range (1.0 - 3.0) generally expected for fully developed salt-fingers. SF mixing, such as parameterized (Zhang et al., 1998), appears to inhibit weakly the effective eddy diffusivity with negative averaged value (~ - 1e-8 m2.s-1). A quasi 5-year cycle is visible in the inter-annual variability of the eddy diffusivity associated to SF, suggesting a decadal modulation of the parameters regulating the SF regime. Even contributing weakly to the turbulent mixing of the area, we hypothesis that SF could influence the seasonal stratification by intensifying the density of deep layers. Downward transfer of salt could have an impact on the nutrient supply for the biological communities, that remains to be determined.


2021 ◽  
Vol 64 (5) ◽  
pp. VO545
Author(s):  
Andrea Di Renzoni ◽  
Sara Tiziana Levi ◽  
Alberto Renzulli ◽  
Mauro Rosi ◽  
David Yoon

T   The paper addresses the long-lasting human presence on the island of Stromboli, an active volcano at the northern edge of the Aeolian archipelago, in the Southern Tyrrhenian sea, Italy. A conceptual model has been built to explore the phenomenon, it takes into account a series of aspects comparing Stromboli to other islands: their morphology, natural resources and geography along with the archaeological and historical data and, further, human attitude to volcanic environments, to risk and to insularity has been deeply explored. We propose a complex narrative where a combination of geological, socio-economic, historical, and psychological factors influenced people’s choices and that human presence is related more to the volcanic (and island) environment (and opportunities) than to volcanic activity.


Sign in / Sign up

Export Citation Format

Share Document