scholarly journals Effects of Thermocapillarity and Thermal Radiation on Flow and Heat Transfer in a Thin Liquid Film on an Unsteady Stretching Sheet

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
R. C. Aziz ◽  
I. Hashim ◽  
S. Abbasbandy

This paper examines the effects of thermocapillarity and thermal radiation on the boundary layer flow and heat transfer in a thin film on an unsteady stretching sheet with nonuniform heat source/sink. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation and then are solved by using the homotopy analysis method (HAM). The effects of the radiation parameter, the thermocapillarity number, and the temperature-dependent parameter in this study are discussed and presented graphically via velocity and temperature profiles.

2012 ◽  
Vol 28 (2) ◽  
pp. 291-297 ◽  
Author(s):  
I-C. Liu ◽  
A. M. Megahed

AbstractIn this paper, the effect of thermal radiation, variable viscosity and variable thermal conductivity on the flow and heat transfer of a thin liquid film over an unsteady stretching sheet is analyzed. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations, are reduced to a set of two non-linear ordinary differential equations, before being solved numerically. Results for the skin-friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that increasing the viscosity parameter leads to a rise in the velocity near the surface of the sheet and a fall in the temperature. Furthermore, it is shown that the temperature increases due to an increase in the values of the thermal conductivity parameter and the thermal radiation parameter, while it decreases with an increase of the Prandtl number.


2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 17
Author(s):  
Siti Nur Aisyah Azeman ◽  
. .

The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The governing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and afterward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the respective solutions.  


2018 ◽  
Vol 388 ◽  
pp. 317-327 ◽  
Author(s):  
Fazle Mabood ◽  
Giulio Lorenzini ◽  
Nopparat Pochai ◽  
Stanford Shateyi

This article deals with the analytical study of MHD flow and heat transfer over a permeable stretching sheet via homotopy analysis method (HAM). The effect of thermal radiation is included in the energy equation, while velocity and thermal slips are included in the boundary conditions. The governing boundary layer equations are transformed into a set of ordinary differential equations by means of similarity transformations. The effects of different parameters on the flow field and heat transfer characteristics are examined. The results obtained were shown to compare well with the numerical results and for some special cases with the published data available in the literature, which are in favorable agreement. Keywords: MHD; Slip flow; Stretching sheet; Thermal radiation; Homotopy analysis method


Sign in / Sign up

Export Citation Format

Share Document