MHD flow and heat transfer in a thin liquid film on an unsteady stretching sheet by the homotopy analysis method

2010 ◽  
Vol 63 (3) ◽  
pp. 357-373 ◽  
Author(s):  
N. F. M. Noor ◽  
O. Abdulaziz ◽  
I. Hashim
2018 ◽  
Vol 388 ◽  
pp. 317-327 ◽  
Author(s):  
Fazle Mabood ◽  
Giulio Lorenzini ◽  
Nopparat Pochai ◽  
Stanford Shateyi

This article deals with the analytical study of MHD flow and heat transfer over a permeable stretching sheet via homotopy analysis method (HAM). The effect of thermal radiation is included in the energy equation, while velocity and thermal slips are included in the boundary conditions. The governing boundary layer equations are transformed into a set of ordinary differential equations by means of similarity transformations. The effects of different parameters on the flow field and heat transfer characteristics are examined. The results obtained were shown to compare well with the numerical results and for some special cases with the published data available in the literature, which are in favorable agreement. Keywords: MHD; Slip flow; Stretching sheet; Thermal radiation; Homotopy analysis method


2009 ◽  
Vol 87 (10) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mostafa A.A. Mahmoud ◽  
Ahmed M. Megahed

The present paper is concerned with the study of variable viscosity and variable thermal conductivity on the flow and heat transfer of an electrically conducting non-Newtonian power-law fluid within a thin liquid film over an unsteady stretching sheet in the presence of a transverse magnetic field. The transformed system of nonlinear ordinary differential equations describing the problem is solved numerically. The effects of various parameters on the velocity and temperature profiles are shown through graphs and discussed. The values of the local skin-friction coefficient and the local Nusselt number for different values of physical parameters are presented through tables.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
R. C. Aziz ◽  
I. Hashim ◽  
S. Abbasbandy

This paper examines the effects of thermocapillarity and thermal radiation on the boundary layer flow and heat transfer in a thin film on an unsteady stretching sheet with nonuniform heat source/sink. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation and then are solved by using the homotopy analysis method (HAM). The effects of the radiation parameter, the thermocapillarity number, and the temperature-dependent parameter in this study are discussed and presented graphically via velocity and temperature profiles.


2012 ◽  
Vol 28 (2) ◽  
pp. 291-297 ◽  
Author(s):  
I-C. Liu ◽  
A. M. Megahed

AbstractIn this paper, the effect of thermal radiation, variable viscosity and variable thermal conductivity on the flow and heat transfer of a thin liquid film over an unsteady stretching sheet is analyzed. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations, are reduced to a set of two non-linear ordinary differential equations, before being solved numerically. Results for the skin-friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that increasing the viscosity parameter leads to a rise in the velocity near the surface of the sheet and a fall in the temperature. Furthermore, it is shown that the temperature increases due to an increase in the values of the thermal conductivity parameter and the thermal radiation parameter, while it decreases with an increase of the Prandtl number.


2010 ◽  
Vol 15 (1) ◽  
pp. 83-95 ◽  
Author(s):  
M. M. Rashidi ◽  
S. A. Mohimanian Pour

In this work, the homotopy analysis method is applied to study the unsteady boundary-layer flow and heat transfer due to a stretching sheet. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of non-dimensional parameter on the heat transfer is discussed in detail. The validity of our solutions is verified by the numerical results.


Sign in / Sign up

Export Citation Format

Share Document