scholarly journals Quantization of Free Scalar Fields in the Presence of Natural Cutoffs

2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
K. Nozari ◽  
F. Moafi ◽  
F. Rezaee Balef

We construct a quantum theory of free scalar fields in (1+1)-dimensions based on the deformed Heisenberg algebrax^,p^=iħ1-βp+2β2p2, that admits the existence of both a minimal measurable length and a maximal momentum, whereβis a deformation parameter. We consider both canonical and path integral formalisms of the scenario. Finally a higher dimensional extension is easily performed in the path integral formalism.

2006 ◽  
Vol 21 (16) ◽  
pp. 1285-1296 ◽  
Author(s):  
TOSHIHIRO MATSUO ◽  
YUUICHIROU SHIBUSA

We construct a quantum theory of free scalar field in (1+1) dimensions based on the deformed Heisenberg algebra [Formula: see text] where β is a deformation parameter. Both canonical and path integral formalisms are employed. A higher dimensional extension is easily performed in the path integral formalism.


1994 ◽  
Vol 27 (18) ◽  
pp. L697-L702 ◽  
Author(s):  
Xiao-Ming Liu ◽  
Shun-Jin Wang

2005 ◽  
Vol 94 (3-4) ◽  
pp. 335-346 ◽  
Author(s):  
H. Bouguettaia ◽  
Is. Chihi ◽  
K. Chenini ◽  
M.T. Meftah ◽  
F. Khelfaoui ◽  
...  

2011 ◽  
Vol 326 (8) ◽  
pp. 2186-2242 ◽  
Author(s):  
Ulrich D. Jentschura ◽  
Jean Zinn-Justin

2009 ◽  
Vol 505 (2) ◽  
pp. 735-742 ◽  
Author(s):  
A. Perez ◽  
K. Mussack ◽  
W. Däppen ◽  
D. Mao

1978 ◽  
Vol 136 (2) ◽  
pp. 259-276 ◽  
Author(s):  
Iring Bender ◽  
Dieter Gromes ◽  
Heinz J. Rothe ◽  
Klaus D. Rothe

Sign in / Sign up

Export Citation Format

Share Document