solar interior
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 36)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 924 (1) ◽  
pp. L20
Author(s):  
Kiran Jain ◽  
Niket Jain ◽  
Sushanta C. Tripathy ◽  
Mausumi Dikpati

Abstract The Sun’s magnetic field varies on multiple timescales. Observations show that the minimum between cycles 24 and 25 was the second consecutive minimum that was deeper and wider than several earlier minima. Since the active regions observed at the Sun’s surface are manifestations of the magnetic field generated in the interior, it is crucial to investigate/understand the dynamics below the surface. In this context, we report by probing the solar interior with helioseismic techniques applied to long-term oscillations data from the Global Oscillation Network Group, that the seismic minima in deeper layers have been occurring about a year earlier than that at the surface for the last two consecutive solar cycles. Our findings also demonstrate a decrease in strong magnetic fields at the base of the convection zone, the primary driver of the surface magnetic activity. We conclude that the magnetic fields located in the core and near-surface shear layers, in addition to the tachocline fields, play an important role in modifying the oscillation frequencies. This further strengthens the existence of a relic magnetic field in the Sun’s core.


2021 ◽  
Vol 65 (3) ◽  
Author(s):  
JiaoLong Zeng ◽  
Cheng Gao ◽  
PengFei Liu ◽  
YongJun Li ◽  
CongSen Meng ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including the physical processes and parameters that are involved. This is followed by a discussion of solar evolution, extending from the birth to the latest stages. As a background for the interpretation of observations related to the solar interior I provide a rather extensive analysis of the sensitivity of solar models to the assumptions underlying their calculation. I then discuss the detailed information about the solar interior that has become available through helioseismic investigations and the detection of solar neutrinos, with further constraints provided by the observed abundances of the lightest elements. Revisions in the determination of the solar surface abundances have led to increased discrepancies, discussed in some detail, between the observational inferences and solar models. I finally briefly address the relation of the Sun to other similar stars and the prospects for asteroseismic investigations of stellar structure and evolution.


Author(s):  
Mark Linton ◽  
Mausumi Dikpati ◽  
Rachel Howe
Keyword(s):  

2021 ◽  
Vol 503 (3) ◽  
pp. 3610-3616
Author(s):  
K Takahata ◽  
H Hotta ◽  
Y Iida ◽  
T Oba

ABSTRACT We perform radiative magnetohydrodynamic calculations for the solar-quiet region to investigate the dependence of statistical flow on magnetic properties and the three-dimensional structure of magnetic patches in the presence of large-scale flow that mimics differential rotation. It has been confirmed that strong magnetic field patches move faster in the longitudinal direction at the solar surface. Consequently, strong magnetic patches penetrate deeper into the solar interior. The motion of the deep-rooted magnetic patches is influenced by the faster differential rotation in the deeper layer. In this study, we perform realistic radiative magnetohydrodynamic calculations using r2d2 code to validate that stronger patches have deeper roots. We also add large-scale flow to mimic the differential rotation. The magnetic patches are automatically detected and tracked, and we evaluate the depth of 30 000 magnetic patches. The velocities of 2.9 million magnetic patches are then measured at the photosphere. We obtain the dependence of these values on the magnetic properties, such as field strength and flux. Our results confirm that strong magnetic patches tend to show deeper roots and faster movement, and we compare our results with observations using the point spread function of instruments at the Hinode and Solar Dynamics Observatory (SDO). Our result is quantitatively consistent with previous observational results of the SDO.


Author(s):  
Francesco L. Villante ◽  
Aldo Serenelli

The fundamental processes by which nuclear energy is generated in the Sun have been known for many years. However, continuous progress in areas such as neutrino experiments, stellar spectroscopy and helioseismic data and techniques requires ever more accurate and precise determination of nuclear reaction cross sections, a fundamental physical input for solar models. In this work, we review the current status of (standard) solar models and present a complete discussion on the relevance of nuclear reactions for detailed predictions of solar properties. In addition, we also provide an analytical model that helps understanding the relation between nuclear cross sections, neutrino fluxes and the possibility they offer for determining physical characteristics of the solar interior. The latter is of particular relevance in the context of the conundrum posed by the solar composition, the solar abundance problem, and in the light of the first ever direct detection of solar CN neutrinos recently obtained by the Borexino collaboration. Finally, we present a short list of wishes about the precision with which nuclear reaction rates should be determined to allow for further progress in our understanding of the Sun.


2021 ◽  
Vol 44 ◽  
pp. 85-91
Author(s):  
V.N. Obridko ◽  
◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalova ◽  
...  

In addition to the well-known 11-year cycle, longer and shorter characteristic periods can be isolated in variations of the parameters of helio-geophysical activity. Periods of about 36 and 60 years were revealed in variations of the geomagnetic activity and an approximately 60-year periodicity, in the evolution of correlation between the pressure in the lower atmosphere and the solar activity. Similar periods are observed in the cyclonic activity. Such periods in the parameters of the solar activity are difficult to identify because of a limited database available; however, they are clearly visible in variations of the asymmetry of the sunspot activity in the northern and southern solar hemispheres. In geomagnetic variations, one can also isolate oscillations with the characteristic periods of 5-6 years (QSO) and 2-3 years (QBO). We have considered 5-6-year periodicities (about half the main cycle) observed in variations of the sunspot numbers and the intensity of the dipole component of the solar magnetic field. A comparison with different magnetic dynamo models allowed us to determine the possible origin of these oscillations. A similar result can be reproduced in a dynamo model with nonlinear parameter variations. In this case, the activity cycle turns out to be anharmonic and contains other periodicities in addition to the main one. As a result of the study, we conclude that the 5-6-year activity variations are related to the processes of nonlinear saturation of the dynamo in the solar interior. Quasi-biennial oscillations are actually separate pulses related little to each other. Therefore, the methods of the spectral analysis do not reveal them over large time intervals. They are a direct product of local fields, are generated in the near-surface layers, and are reliably recorded only in the epochs of high solar activity.


2020 ◽  
Vol 644 ◽  
pp. A92
Author(s):  
Jiaolong Zeng ◽  
Yongjun Li ◽  
Yong Hou ◽  
Cheng Gao ◽  
Jianmin Yuan

Recent quantitative experiments on the ionization potential depression (IPD) in dense plasma show that the observational results are difficult to explain with the widely used analytical models for plasma screening. Here, we investigate the effect of plasma screening on the IPD and ionization balance of dense carbon plasma under solar and stellar interior conditions using our developed consistent nonanalytical model. The screening potential can be primarily attributed to the free electrons in the plasma and is determined by the microspace distribution of these free electrons. The ionization balance is determined by solving the Saha equation, including the effect of IPD. The predicted IPD and average ionization degree are larger than those obtained using the Stewart–Pyatt model for mass densities that are greater than 3.0 g cm−3. Under solar interior conditions, our results are in better agreement with the Ecker–Kröll model at electron temperatures and densities lower than 250 eV and 2.1 × 1023 cm−3 and in the best agreement with the ion-sphere model at 303 eV and 4.3 × 1023 cm−3. Finally, our results are compared with those obtained via a recent experiment on a CH-mixture plasma that has been compressed six times. The predicted average ionization degree of C in a CH mixture agrees better with the experiment than the Stewart–Pyatt and Thomas–Fermi models when the screening from free electrons contributed by hydrogen atoms is included. Our results provide useful information concerning the ionization balance and can be applied to investigate the opacity and equations of state for dense plasma under the solar and stellar interior conditions.


Sign in / Sign up

Export Citation Format

Share Document