scholarly journals Robust Exponential Stability Criteria of LPD Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Kanit Mukdasai ◽  
Akkharaphong Wongphat ◽  
Piyapong Niamsup

This paper investigates the problem of robust exponential stability for linear parameter-dependent (LPD) systems with discrete and distributed time-varying delays and nonlinear perturbations. Parameter dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, and linear matrix inequality are proposed to analyze the stability. On the basis of the estimation and by utilizing free-weighting matrices, new delay-dependent exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.

2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Sirada Pinjai ◽  
Kanit Mukdasai

This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD) neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Sirada Pinjai ◽  
Kanit Mukdasai

We investigate the problem of robust exponential stability for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Based on the combination of descriptor model transformation, decomposition technique of coefficient matrix, and utilization of zero equation and new Lyapunov functional, sufficient conditions for robust exponential stability are obtained and formulated in terms of linear matrix inequalities (LMIs). The new stability conditions are less conservative and more general than some existing results.


2011 ◽  
Vol 217-218 ◽  
pp. 668-673
Author(s):  
Xiu Liu ◽  
Shou Ming Zhong ◽  
Xiu Yong Ding

The global exponential stability for switched neutral systems with time-varying delays and nonlinear perturbations is investigated in this paper. LMI-based delay-dependent criterion is proposed to guarantee exponential stability for our considered systems under any switched signal. Lyapunov-Krasovskii functional and Leibniz-Newton formula are applied to find the stability results. Free weighting matrix and linear matrix inequality (LMI) approaches are used to solve the proposed conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Piyapong Niamsup ◽  
Narongsak Yotha ◽  
Kanit Mukdasai

We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-varying delays and nonlinear perturbations. The time delays are continuous functions belonging to the given interval delays, which mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical example is presented to illustrate the effectiveness of the proposed method.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Liang-Dong Guo ◽  
Sheng-Juan Huang ◽  
Li-Bing Wu

The problem of absolute stability analysis for neutral-type Lur’e systems with time-varying delays is investigated. Novel delay-decomposing approaches are proposed to divide the variation interval of the delay into three unequal subintervals. Some new augment Lyapunov–Krasovskii functionals (LKFs) are defined on the obtained subintervals. The integral inequality method and the reciprocally convex technique are utilized to deal with the derivative of the LKFs. Several improved delay-dependent criteria are derived in terms of the linear matrix inequalities (LMIs). Compared with some previous criteria, the proposed ones give the results with less conservatism and lower numerical complexity. Two numerical examples are included to illustrate the effectiveness and the improvement of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Wu Wen ◽  
Kaibo Shi

This study is concerned with the problem of new delay-dependent exponential stability criteria for neural networks (NNs) with mixed time-varying delays via introducing a novel integral inequality approach. Specifically, first, by taking fully the relationship between the terms in the Leibniz-Newton formula into account, several improved delay-dependent exponential stability criteria are obtained in terms of linear matrix inequalities (LMIs). Second, together with some effective mathematical techniques and a convex optimization approach, less conservative conditions are derived by constructing an appropriate Lyapunov-Krasovskii functional (LKF). Third, the proposed methods include the least numbers of decision variables while keeping the validity of the obtained results. Finally, three numerical examples with simulations are presented to illustrate the validity and advantages of the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Shu Lv ◽  
Junkang Tian ◽  
Shouming Zhong

This paper concerns the problem of delay-dependent stability criteria for recurrent neural networks with time varying delays. By taking more information of states and activation functions as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


Sign in / Sign up

Export Citation Format

Share Document