scholarly journals Algorithms for General System of Generalized Resolvent Equations with Corresponding System of Variational Inclusions

2012 ◽  
Vol 2012 ◽  
pp. 1-24
Author(s):  
Lu-Chuan Ceng ◽  
Ching-Feng Wen

Very recently, Ahmad and Yao (2009) introduced and considered a system of generalized resolvent equations with corresponding system of variational inclusions in uniformly smooth Banach spaces. In this paper we introduce and study a general system of generalized resolvent equations with corresponding general system of variational inclusions in uniformly smooth Banach spaces. We establish an equivalence relation between general system of generalized resolvent equations and general system of variational inclusions. The iterative algorithms for finding the approximate solutions of general system of generalized resolvent equations are proposed. The convergence criteria of approximate solutions of general system of generalized resolvent equations obtained by the proposed iterative algorithm are also presented. Our results represent the generalization, improvement, supplement, and development of Ahmad and Yao corresponding ones.






2011 ◽  
Vol 2011 ◽  
pp. 1-29 ◽  
Author(s):  
Pongsakorn Sunthrayuth ◽  
Poom Kumam

We introduce a new general system of variational inclusions in Banach spaces and propose a new iterative scheme for finding common element of the set of solutions of the variational inclusion with set-valued maximal monotone mapping and Lipschitzian relaxed cocoercive mapping and the set of fixed point of nonexpansive semigroups in a uniformly convex and 2-uniformly smooth Banach space. Furthermore, strong convergence theorems are established under some certain control conditions. As applications, finding a common solution for a system of variational inequality problems and minimization problems is given.



Sign in / Sign up

Export Citation Format

Share Document