scholarly journals Trends in Snag Populations in Drought-Stressed Mixed-Conifer and Ponderosa Pine Forests (1997–2007)

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joseph L. Ganey ◽  
Scott C. Vojta

Snags provide important biological legacies, resources for numerous species of native wildlife, and contribute to decay dynamics and ecological processes in forested ecosystems. We monitored trends in snag populations from 1997 to 2007 in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosaDougl.exLaws) forests, northern Arizona. Median snag density increased by 75 and 90% in mixed-conifer and ponderosa pine forests, respectively, over this time period. Increased snag density was driven primarily by a large pulse in drought-mediated tree mortality from 2002 to 2007, following a smaller pulse from 1997 to 2002. Decay-class composition and size-class composition of snag populations changed in both forest types, and species composition changed in mixed-conifer forest. Increases in snag abundance may benefit some species of native wildlife in the short-term by providing increased foraging and nesting resources, but these increases may be unsustainable in the long term. Observed changes in snag recruitment and fall rates during the study illustrate the difficulty involved in modeling dynamics of those populations in an era of climate change and changing land management practices.

2006 ◽  
Vol 36 (1) ◽  
pp. 238-254 ◽  
Author(s):  
Daniel DB Perrakis ◽  
James K Agee

This study examined the effects of spring and fall restoration burning in an old-growth mixed-conifer – ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) forest in southern Oregon. Variables measured include fuel loads, forest structure indices, mortality of large ponderosa pines, and pine resin defenses. One year after treatment, reductions in surface fuel loads and changes to forest structure parameters suggested that burning treatments could meet restoration objectives, with fall burns being somewhat more effective than spring burns. However, mortality of pre settlement pines was significantly higher in fall burns than in spring burns, and both were higher than in unburned controls. Bark beetles (Coleoptera: Scolytidae) were important mortality agents within 2 years after burning. Resin defenses (pressure and flow) were variable over the 2 years of postburn study but showed no evidence of decrease in burned trees; rather, resin defenses were significantly higher in burned trees than in controls at several measurement dates. While increased beetle attacks have previously been documented following burning, there has been much less research on resin responses to fire. These findings suggest that current models of beetle–host interactions do not properly explain the effects of prescribed fire in ponderosa pine forests.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joseph L. Ganey ◽  
Jose M. Iniguez ◽  
Scott C. Vojta ◽  
Amy R. Iniguez

Abstract Background Snags (standing dead trees) are important biological legacies in forest systems, providing numerous resources as well as a record of recent tree mortality. From 1997 to 2017, we monitored snag populations in drought-influenced mixed-conifer and ponderosa pine (Pinus ponderosa) forests in northern Arizona. Results Snag density increased significantly in both forest types. This increase was driven largely by a pulse in snag recruitment that occurred between 2002 and 2007, following an extreme drought year in 2002, with snag recruitment returning to pre-pulse levels in subsequent time periods. Some later years during the study also were warmer and/or drier than average, but these years were not as extreme as 2002 and did not trigger the same level of snag recruitment. Snag recruitment was not equal across tree species and size classes, resulting in significant changes in species composition and size-class distributions of snag populations in both forest types. Because trees were far more abundant than snags in these forests, the effect of this mortality pulse on tree populations was far smaller than its effect on snag populations. Snag loss rates increased over time during the study, even though many snags were newly recruited. This may reflect the increasing prevalence of white fir snags and/or snags in the smaller size classes, which generally decay faster than snags of other species or larger snags. Thus, although total numbers of snags increased, many of the newly recruited snags may not persist long enough to be valuable as nesting substrates for native wildlife. Conclusions Increases in snag abundance appeared to be due to a short-term tree mortality “event” rather than a longer-term pattern of elevated tree mortality. This mortality event followed a dry and extremely warm year (2002) embedded within a longer-term megadrought. Climate models suggest that years like 2002 may occur with increasing frequency in the southwestern U.S. Such years may result in additional mortality pulses, which in turn may strongly affect trajectories in abundance, structure, and composition of snag populations. Relative effects on tree populations likely will be smaller, but, over time, also could be significant.


2015 ◽  
Vol 45 (11) ◽  
pp. 1462-1473 ◽  
Author(s):  
Peter M. Brown ◽  
Michael A. Battaglia ◽  
Paula J. Fornwalt ◽  
Benjamin Gannon ◽  
Laurie S. Huckaby ◽  
...  

Management of many dry conifer forests in western North America is focused on promoting resilience to future wildfires, climate change, and land use impacts through restoration of historical patterns of forest structure and disturbance processes. Historical structural data provide models for past resilient conditions that inform the design of silvicultural treatments and help to assess the success of treatments at achieving desired conditions. We used dendrochronological data to reconstruct nonspatial and spatial forest structure at 1860 in fourteen 0.5 ha plots in lower elevation (∼1900–2100 m) ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests across two study areas in northern Colorado. Fires recorded by trees in two or more plots from 1667 to 1859 occurred, on average, every 8–15 years depending on scale of analysis. The last fire recorded in two or more plots occurred in 1859. Reconstructed 1860 stand structures were very diverse, with tree densities ranging from 0 to 320 trees·ha−1, basal areas ranging from 0.0 to 17.1 m2·ha−1, and quadratic mean diameters ranging from 0.0 to 57.5 cm. All trees in 1860 were ponderosa pine. Trees were significantly aggregated in 62% of plots in which spatial patterns could be estimated, with 10% to 90% of trees mainly occurring in groups of two to eight (maximum, 26). Current stands based on living trees with a diameter at breast height of ≥4 cm are more dense (range, 175–1010 trees·ha−1) with generally increased basal areas (4.4 to 23.1 m2·ha−1) and smaller trees (quadratic mean diameters ranging from 15.7 to 28.2 cm) and contain greater proportions of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Rocky Mountain juniper (Juniperus scopulorum Sarg.). This is the first study to provide detailed quantitative metrics to guide restoration prescription development, implementation, and evaluation in these and similar ponderosa pine forests in northern Colorado.


2015 ◽  
Vol 79 (8) ◽  
pp. 1369-1377 ◽  
Author(s):  
Joseph L. Ganey ◽  
Gary C. White ◽  
Jeffrey S. Jenness ◽  
Scott C. Vojta

Author(s):  
Jane Bock ◽  
Carl Bock

This was the second year of our study designed to evaluate the nature of vegetation occurring under Pinus ponderosa canopy in Wind Cave National Park and to define the relationship between this vegetation and fire. Fire is known to be a natural phenomenon in ponderosa pine forests (Wright 1978), and to play a major role in determining the position of the pine-grassland ecotone in the Black Hills (Gartner and Thompson 1973). Wind Cave personnel are developing a fire management plan allowing for prescribed burning, in hopes of bringing the park ecosystems back under a "natural" fire regime. Results of our study will help park management predict the effects of such prescribed burning on the ponderosa pine community.


Author(s):  
Michael Jenkins

The major objective of this ongoing study is to document vegetative changes resulting from alteration of the fire regime in the mixed conifer/aspen communities of Bryce Canyon National Park. Previous fire history studies have documented fire return intervals using fire scar analysis of ponderosa pine Pinus ponderosa in the park (Buchannan and Tolman 1983: Wight 1989) and for the Paunsaugunt Plateau (Stein 1988). Numerous other studies have similarly documented the fire regime in pre-European settlement ponderosa pine forests in western North America. The study is being conducted in the more mesic mixed conifer communities at the south end of Bryce Canyon National Park and will specifically document vegetative changes suggested by Roberts et al. (1992) resulting from suppression of frequent low intensity surface fires and overgrazing.


2019 ◽  
Vol 11 (23) ◽  
pp. 2782 ◽  
Author(s):  
Jessica J. Walker ◽  
Christopher E. Soulard

Post-fire recovery trajectories in ponderosa pine (Pinus ponderosa Laws.) forests of the southwestern United States are increasingly shifting away from pre-burn vegetation communities. This study investigated whether phenological metrics derived from a multi-decade remotely sensed imagery time-series could differentiate among grass, evergreen shrub, deciduous, or conifer-dominated replacement pathways. We focused on 10 fires that burned ponderosa pine forests in Arizona and New Mexico, USA before the year 2000. A total of 29 sites with discernable post-fire recovery signals were selected within high-severity burn areas. At each site, we used Google Earth Engine to derive time-series of normalized difference vegetation index (NDVI) signals from Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager data from 1984 to 2017. We aggregated values to 8- and 16-day intervals, fit Savitzky–Golay filters to each sequence, and extracted annual phenology metrics of amplitude, base value, peak value, and timing of peak value in the TIMESAT analysis package. Results showed that relative to post-fire conditions, pre-burn ponderosa pine forests exhibit significantly lower mean NDVI amplitude (0.14 vs. 0.21), higher mean base NDVI (0.47 vs. 0.22), higher mean peak NDVI (0.60 vs. 0.43), and later mean peak NDVI (day of year 277 vs. 237). Vegetation succession pathways exhibit distinct phenometric characteristics as early as year 5 (amplitude) and as late as year 20 (timing of peak NDVI). This study confirms the feasibility of leveraging phenology metrics derived from long-term imagery time-series to identify and monitor ecological outcomes. This information may be of benefit to land resource managers who seek indicators of future landscape compositions to inform management strategies.


2012 ◽  
Vol 21 (3) ◽  
pp. 306 ◽  
Author(s):  
Chad M. Hoffman ◽  
Carolyn Hull Sieg ◽  
Joel D. McMillin ◽  
Peter Z. Fulé

Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions. We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5 years previously on five national forests. Half of the plots we sampled in 2007 had bark beetle-caused pine mortality and half did not have mortality. Adjusting for differences in pre-outbreak stand density, plots with mortality had higher surface fuel and lower canopy fuel loadings 5 years after the outbreak compared with plots without mortality. Total surface fuels averaged 2.5 times higher and calculated canopy fuels 2 times lower in plots with mortality. Nearly half of the trees killed in the bark beetle outbreak had fallen within 5 years, resulting in loadings of 1000-h woody fuels above recommended ranges for dry coniferous forests in 20% of the mortality plots. We expect 1000-h fuel loadings in other mortality plots to exceed recommended ranges as remaining snags fall to the ground. This study adds to previous work that documents the highly variable and complex effects of bark beetle outbreaks on fuel complexes.


Sign in / Sign up

Export Citation Format

Share Document