scholarly journals Numerical Simulation of Unsteady Compressible Flow in Convergent Channel: Pressure Spectral Analysis

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Petra Pořízková ◽  
Karel Kozel ◽  
Jaromír Horáček

This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow is caused by a prescribed periodic motion of a part of the channel wall with large amplitudes, nearly closing the channel during oscillations. The flow is described by the system of Navier-Stokes equations for laminar flows. The numerical solution is implemented using the finite volume method (FVM) and the predictor-corrector Mac-Cormack scheme with Jameson artificial viscosity using a grid of quadrilateral cells. Due to the motion of the grid, the basic system of conservation laws is considered in the arbitrary Lagrangian-Eulerian (ALE) form. The numerical results of unsteady flows in the channel are presented for inlet Mach numberM∞=0.012, Reynolds numberRe∞=4481,and the wall motion frequency 100 Hz.

Author(s):  
Elisabeth Longatte

This work is concerned with the modelling of the interaction of a fluid with a rigid or a flexible elastic cylinder in the presence of axial or cross-flow. A partitioned procedure is involved to perform the computation of the fully-coupled fluid solid system. The fluid flow is governed by the incompressible Navier-Stokes equations and modeled by using a fractional step scheme combined with a co-located finite volume method for space discretisation. The motion of the fluid domain is accounted for by a moving mesh strategy through an Arbitrary Lagrangian-Eulerian (ALE) formulation. Solid dyncamics is modeled by a finite element method in the linear elasticity framework and a fixed point method is used for the fluid solid system computation. In the present work two examples are presented to show the method robustness and efficiency.


2015 ◽  
Vol 2015 ◽  
pp. 1-25 ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Madjid Abbaspour

The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a2D NACA0012foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

2021 ◽  
Vol 11 (11) ◽  
pp. 4748
Author(s):  
Monika Balázsová ◽  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Adam Kosík

This study deals with the development of an accurate, efficient and robust method for the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity. This problem requires the reliable solution of flow in time-dependent domains and the solution of deformations of elastic bodies formed by several materials with complicated geometry depending on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE) method. The elasticity problem uses the non-stationary formulation of the dynamic system using the St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds deformation than for the linear elasticity model. Moreover, the numerical simulations showed that the differences between the two considered nonlinear material models are very small.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


2010 ◽  
Vol 297-301 ◽  
pp. 924-929
Author(s):  
Inès Bhouri Baouab ◽  
Nejla Mahjoub Said ◽  
Hatem Mhiri ◽  
Georges Le Palec ◽  
Philippe Bournot

The present work consists in a numerical examination of the dispersion of pollutants discharged from a bent chimney and crossing twin similar cubic obstacles placed in the lee side of the source. The resulting flow is assumed to be steady, three-dimensional and turbulent. Its modelling is based upon the resolution of the Navier Stokes equations by means of the finite volume method together with the RSM (Reynolds Stress Model) turbulent model. This examination aims essentially at detailing the wind flow perturbations, the recirculation and turbulence generated by the presence of the twin cubic obstacles placed tandem at different spacing distances (gaps): W = 4 h, W = 2 h and W = 1 h where W is the distance separating both buildings.


Sign in / Sign up

Export Citation Format

Share Document