scholarly journals Bifurcation of Traveling Wave Solutions for a Two-Component Generalizedθ-Equation

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Zhenshu Wen

We study the bifurcation of traveling wave solutions for a two-component generalizedθ-equation. We show all the explicit bifurcation parametric conditions and all possible phase portraits of the system. Especially, the explicit conditions, under which there exist kink (or antikink) solutions, are given. Additionally, not only solitons and kink (antikink) solutions, but also peakons and periodic cusp waves with explicit expressions, are obtained.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhenshu Wen

Fan et al. studied the bifurcations of traveling wave solutions for a two-component Fornberg-Whitham equation. They gave a part of possible phase portraits and obtained some uncertain parametric conditions for solitons and kink (antikink) solutions. However, the exact explicit parametric conditions have not been given for the existence of solitons and kink (antikink) solutions. In this paper, we study the bifurcations for the two-component Fornberg-Whitham equation in detalis, present all possible phase portraits, and give the exact explicit parametric conditions for various solutions. In addition, not only solitons and kink (antikink) solutions, but also peakons and periodic cusp waves are obtained. Our results extend the previous study.


2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhigang Liu ◽  
Kelei Zhang ◽  
Mengyuan Li

In this paper, we study the (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation with a conformable fractional derivative. By the fractional complex transform and the bifurcation method for dynamical systems, we investigate the dynamical behavior and bifurcation of solutions of the traveling wave system and seek all possible exact traveling wave solutions of the equation. Furthermore, the phase portraits of the dynamical system and the remarkable features of the solutions are demonstrated via interesting figures.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450037 ◽  
Author(s):  
Jibin Li

In this paper, we apply the method of dynamical systems to the traveling wave solutions of the Novikov equation. Through qualitative analysis, we obtain bifurcations of phase portraits of the traveling system and exact cuspon wave solution, as well as a family of breaking wave solutions (compactons). We find that the corresponding traveling system of Novikov equation has no one-peakon solution.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050109
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

This paper studies the bifurcations of phase portraits for the regularized Saint-Venant equation (a two-component system), which appears in shallow water theory, by using the theory of dynamical systems and singular traveling wave techniques developed in [Li & Chen, 2007] under different parameter conditions in the two-parameter space. Some explicit exact parametric representations of the solitary wave solutions, smooth periodic wave solutions, periodic peakons, as well as peakon solutions, are obtained. More interestingly, it is found that the so-called [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions, and their limiting solution is a peakon solution. In addition, it is found that the [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions and compacton solutions.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250121 ◽  
Author(s):  
FANG YAN ◽  
HAIHONG LIU

The dynamical behavior of a higher-order nonlinear Schrödinger equation is studied by using the bifurcation theory method of dynamical systems. With the aid of Maple, all bifurcations and phase portraits in the parametric space are obtained. Moreover, some new traveling wave solutions corresponding to the orbits on phase portraits are given, which include solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions.


Sign in / Sign up

Export Citation Format

Share Document