scholarly journals Exact Traveling Wave Solutions and Bifurcation of a Generalized (3+1)-Dimensional Time-Fractional Camassa-Holm-Kadomtsev-Petviashvili Equation

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhigang Liu ◽  
Kelei Zhang ◽  
Mengyuan Li

In this paper, we study the (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation with a conformable fractional derivative. By the fractional complex transform and the bifurcation method for dynamical systems, we investigate the dynamical behavior and bifurcation of solutions of the traveling wave system and seek all possible exact traveling wave solutions of the equation. Furthermore, the phase portraits of the dynamical system and the remarkable features of the solutions are demonstrated via interesting figures.

2012 ◽  
Vol 22 (03) ◽  
pp. 1250051
Author(s):  
YUANFEN XU ◽  
ZHENXIANG DAI

For the (2 + 1)-dimensional mKP equation, what is the dynamical behavior of its traveling wave solutions and how does it depend on the parameters of the systems? This paper will answer these questions by using the methods of dynamical systems. Thirteen exact explicit parametric representations of the traveling wave solutions are given. Bifurcations of phase portraits of the corresponding singular traveling wave system are shown.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450088
Author(s):  
Jibin Li

In this paper, we consider a model of nonlinear pulse propagation in optical fibers. By investigating the dynamical behavior and bifurcations of solutions of the traveling wave system of PDE, we derive all possible exact explicit traveling wave solutions under different parameter conditions. These results completed the study of traveling wave solutions for the mentioned model posed by [Lenells, 2009].


2017 ◽  
Vol 27 (07) ◽  
pp. 1750114 ◽  
Author(s):  
Zhenshu Wen

In this paper, we study the bifurcations and exact traveling wave solutions of the celebrated Green–Naghdi equations by using the qualitative theory of differential equations and the bifurcation theory of dynamical systems. We obtain all possible phase portraits of bifurcations of the system under various conditions about the parameters associated with the planar dynamical system. Then we show the existence of traveling wave solutions including solitary wave solutions, blow-up solutions, periodic wave solutions and periodic blow-up solutions, and give their exact explicit expressions. These results can help to understand the dynamical behavior of the traveling wave solutions of the system.


2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050109
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

This paper studies the bifurcations of phase portraits for the regularized Saint-Venant equation (a two-component system), which appears in shallow water theory, by using the theory of dynamical systems and singular traveling wave techniques developed in [Li & Chen, 2007] under different parameter conditions in the two-parameter space. Some explicit exact parametric representations of the solitary wave solutions, smooth periodic wave solutions, periodic peakons, as well as peakon solutions, are obtained. More interestingly, it is found that the so-called [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions, and their limiting solution is a peakon solution. In addition, it is found that the [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions and compacton solutions.


2013 ◽  
Vol 23 (01) ◽  
pp. 1350009 ◽  
Author(s):  
JIBIN LI ◽  
GUANRONG CHEN

The traveling wave system of a microstructured solid model belongs to the second class of singular traveling wave equations studied in [Li et al., 2009]. In this paper, by using methods from dynamical systems theory, bifurcations of phase portraits of such a traveling wave system are analyzed in its corresponding parameter space. The existence of kink wave solutions and uncountably infinitely many bounded solutions is proved. Moreover, the exact parametric representations of periodic solutions and homoclinic orbits are obtained.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250118 ◽  
Author(s):  
JIBIN LI ◽  
GUANRONG CHEN

By using the approach of dynamical systems, the bifurcations of phase portraits for the traveling system of the Kudryashov–Sinelshchikov equation with ν = δ = 0 are studied, in different parametric regions of (α, c)-parametric plane. Corresponding to different phase orbits of the traveling system, more than 26 exact explicit traveling wave solutions are derived. The dynamics of singular nonlinear traveling system is completely determined.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Can Chen ◽  
Weiguo Rui ◽  
Yao Long

In this paper, by using the integral bifurcation method, we studied the Kudryashov-Sinelshchikov equation. In the special parametric conditions, some singular and nonsingular exact traveling wave solutions, such as periodic cusp-wave solutions, periodic loop-wave solutions, smooth loop-soliton solutions, smooth solitary wave solutions, periodic double wave solutions, periodic compacton solutions, and nonsmooth peakon solutions are obtained. Further more, the dynamic behaviors of these exact traveling wave solutions are investigated. It is found that the waveforms of some traveling wave solutions vary with the changes of parameters.


Sign in / Sign up

Export Citation Format

Share Document