scholarly journals Convergence Theorems for Maximal Monotone Operators, Weak Relatively Nonexpansive Mappings and Equilibrium Problems

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Kamonrat Nammanee ◽  
Suthep Suantai ◽  
Prasit Cholamjiak

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems.

Author(s):  
A. A. Mebawondu ◽  
L. O. Jolaoso ◽  
H. A. Abass ◽  
O. K. Narain

In this paper, we propose a new modified relaxed inertial regularization method for finding a common solution of a generalized split feasibility problem, the zeros of sum of maximal monotone operators, and fixed point problem of two nonlinear mappings in real Hilbert spaces. We prove that the proposed method converges strongly to a minimum-norm solution of the aforementioned problems without using the conventional two cases approach. In addition, we apply our convergence results to the classical variational inequality and equilibrium problems, and present some numerical experiments to show the efficiency and applicability of the proposed method in comparison with other existing methods in the literature. The results obtained in this paper extend, generalize and improve several results in this direction.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chin-Tzong Pang ◽  
Eskandar Naraghirad ◽  
Ching-Feng Wen

We study Mann type iterative algorithms for finding fixed points of Bregman relatively nonexpansive mappings in Banach spaces. By exhibiting an example, we first show that the class of Bregman relatively nonexpansive mappings embraces properly the class of Bregman strongly nonexpansive mappings which was investigated by Martín-Márques et al. (2013). We then prove weak convergence theorems for the sequences produced by the methods. Some application of our results to the problem of finding a zero of a maximal monotone operator in a Banach space is presented. Our results improve and generalize many known results in the current literature.


Sign in / Sign up

Export Citation Format

Share Document