scholarly journals Weak Convergence Theorems for Bregman Relatively Nonexpansive Mappings in Banach Spaces

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chin-Tzong Pang ◽  
Eskandar Naraghirad ◽  
Ching-Feng Wen

We study Mann type iterative algorithms for finding fixed points of Bregman relatively nonexpansive mappings in Banach spaces. By exhibiting an example, we first show that the class of Bregman relatively nonexpansive mappings embraces properly the class of Bregman strongly nonexpansive mappings which was investigated by Martín-Márques et al. (2013). We then prove weak convergence theorems for the sequences produced by the methods. Some application of our results to the problem of finding a zero of a maximal monotone operator in a Banach space is presented. Our results improve and generalize many known results in the current literature.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Moosa Gabeleh ◽  
Naseer Shahzad

The aim of this paper is to prove some best proximity point theorems for new classes of cyclic mappings, called pointwise cyclic orbital contractions and asymptotic pointwise cyclic orbital contractions. We also prove a convergence theorem of best proximity point for relatively nonexpansive mappings in uniformly convex Banach spaces.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Hiroko Manaka

LetEbe a smooth Banach space with a norm . Let for any , where stands for the duality pair andJis the normalized duality mapping. With respect to this bifunction , a generalized nonexpansive mapping and a -strongly nonexpansive mapping are defined in . In this paper, using the properties of generalized nonexpansive mappings, we prove convergence theorems for common zero points of a maximal monotone operator and a -strongly nonexpansive mapping.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Kamonrat Nammanee ◽  
Suthep Suantai ◽  
Prasit Cholamjiak

We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of maximal monotone operators, the equilibrium problem, and the fixed point problem of weak relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex Banach space, strong convergence theorems by using a shrinking projection method. We finally apply the obtained results to a system of convex minimization problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Chin-Tzong Pang ◽  
Eskandar Naraghirad

Using Bregman functions, we introduce a new hybrid iterative scheme for finding common fixed points of an infinite family of Bregman weakly relatively nonexpansive mappings in Banach spaces. We prove a strong convergence theorem for the sequence produced by the method. No closedness assumption is imposed on a mappingT:C→C, whereCis a closed and convex subset of a reflexive Banach spaceE. Furthermore, we apply our method to solve a system of equilibrium problems in reflexive Banach spaces. Some application of our results to the problem of finding a minimizer of a continuously Fréchet differentiable and convex function in a Banach space is presented. Our results improve and generalize many known results in the current literature.


Sign in / Sign up

Export Citation Format

Share Document