scholarly journals Complex Transforms for Systems of Fractional Differential Equations

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Rabha W. Ibrahim

We provide a complex transform that maps the complex fractional differential equation into a system of fractional differential equations. The homogeneous and nonhomogeneous cases for equivalence equations are discussed and also nonequivalence equations are studied. Moreover, the existence and uniqueness of solutions are established and applications are illustrated.

2020 ◽  
Vol 25 (4) ◽  
pp. 642-660
Author(s):  
Kishor D. Kucche ◽  
Jyoti P. Kharade ◽  
J. Vanterler da C. Sousa

In this paper, we consider the nonlinear Ψ-Hilfer impulsive fractional differential equation. Our main objective is to derive the formula for the solution and examine the existence and uniqueness of solutions. The acquired results are extended to the nonlocal Ψ-Hilfer impulsive fractional differential equation. We gave an applications to the outcomes we obtained. Further, examples are provided in support of the results we got.


2014 ◽  
Vol 2014 ◽  
pp. 1-28 ◽  
Author(s):  
Yuji Liu ◽  
Bashir Ahmad

We discuss the existence and uniqueness of solutions for initial value problems of nonlinear singular multiterm impulsive Caputo type fractional differential equations on the half line. Our study includes the cases for a single base point fractional differential equation as well as multiple base points fractional differential equation. The asymptotic behavior of solutions for the problems is also investigated. We demonstrate the utility of our work by applying the main results to fractional-order logistic models.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jingjing Tan ◽  
Meixia Li ◽  
Aixia Pan

We prove that there are unique positive solutions for a new kind of fractional differential equation with a negatively perturbed term boundary value problem. Our methods rely on an iterative algorithm which requires constructing an iterative scheme to approximate the solution. This allows us to calculate the estimation of the convergence rate and the approximation error.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xia Wang ◽  
Run Xu

In this paper, we research CFR fractional differential equations with the derivative of order 3<α<4. We prove existence and uniqueness theorems for CFR-type initial value problem. By Green’s function and its corresponding maximum value, we obtain the Lyapunov-type inequality of corresponding equations. As for application, we study the eigenvalue problem in the sense of CFR.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rabha W. Ibrahim

We prove the Ulam-Hyers stability of Cauchy fractional differential equations in the unit disk for the linear and non-linear cases. The fractional operators are taken in sense of Srivastava-Owa operators.


Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650021 ◽  
Author(s):  
KIRAN M. KOLWANKAR

The concept of local fractional derivative was introduced in order to be able to study the local scaling behavior of functions. However it has turned out to be much more useful. It was found that simple equations involving these operators naturally incorporate the fractal sets into the equations. Here, the scope of these equations has been extended further by considering different possibilities for the known function. We have also studied a separable local fractional differential equation along with its method of solution.


Sign in / Sign up

Export Citation Format

Share Document