scholarly journals Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase δ

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yuh Shiwa ◽  
Sanae Fukushima-Tanaka ◽  
Ken Kasahara ◽  
Takayuki Horiuchi ◽  
Hirofumi Yoshikawa

A novel mutagenesis technique using error-prone DNA polymerase δ (polδ), the disparity mutagenesis model of evolution, has been successfully employed to generate novel microorganism strains with desired traits. However, little else is known about the spectra of mutagenic effects caused by disparity mutagenesis. We evaluated and compared the performance of the polδMKII mutator, which expresses the proofreading-deficient and low-fidelity polδ, in Saccharomyces cerevisiae haploid strain with that of the commonly used chemical mutagen ethyl methanesulfonate (EMS). This mutator strain possesses exogenous mutant polδ supplied from a plasmid, tthereby leaving the genomic one intact. We measured the mutation rate achieved by each mutagen and performed high-throughput next generation sequencing to analyze the genome-wide mutation spectra produced by the 2 mutagenesis methods. The mutation frequency of the mutator was approximately 7 times higher than that of EMS. Our analysis confirmed the strong G/C to A/T transition bias of EMS, whereas we found that the mutator mainly produces transversions, giving rise to more diverse amino acid substitution patterns. Our present study demonstrated that the polδMKII mutator is a useful and efficient method for rapid strain improvement based on in vivo mutagenesis.

2000 ◽  
Vol 20 (9) ◽  
pp. 3234-3244 ◽  
Author(s):  
Shao-Win Wang ◽  
Takashi Toda ◽  
Robert MacCallum ◽  
Adrian L. Harris ◽  
Chris Norbury

ABSTRACT The S-M checkpoint is an intracellular signaling pathway that ensures that mitosis is not initiated in cells undergoing DNA replication. We identified cid1, a novel fission yeast gene, through its ability when overexpressed to confer specific resistance to a combination of hydroxyurea, which inhibits DNA replication, and caffeine, which overrides the S-M checkpoint. Cid1 overexpression also partially suppressed the hydroxyurea sensitivity characteristic of DNA polymerase δ mutants and mutants defective in the “checkpoint Rad” pathway. Cid1 is a member of a family of putative nucleotidyltransferases including budding yeast Trf4 and Trf5, and mutation of amino acid residues predicted to be essential for this activity resulted in loss of Cid1 function in vivo. Two additional Cid1-like proteins play similar but nonredundant checkpoint-signaling roles in fission yeast. Cells lacking Cid1 were found to be viable but specifically sensitive to the combination of hydroxyurea and caffeine and to be S-M checkpoint defective in the absence of Cds1. Genetic data suggest that Cid1 acts in association with Crb2/Rhp9 and through the checkpoint-signaling kinase Chk1 to inhibit unscheduled mitosis specifically when DNA polymerase δ or ɛ is inhibited.


Cell Reports ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 1329-1341.e5 ◽  
Author(s):  
William C. Drosopoulos ◽  
David A. Vierra ◽  
Charles A. Kenworthy ◽  
Robert A. Coleman ◽  
Carl L. Schildkraut

2012 ◽  
Vol 287 (15) ◽  
pp. 12480-12490 ◽  
Author(s):  
Ashwini S. Kamath-Loeb ◽  
Jiang-Cheng Shen ◽  
Michael W. Schmitt ◽  
Lawrence A. Loeb

DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3′ → 5′ DNA exonuclease activities. Pol δ exonuclease removes 3′-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3′-terminal mismatches to enable primer extension by Pol δ. Consistent with ourin vitroobservations, we show that WRN contributes to the maintenance of DNA synthesis fidelityin vivo. Cells expressing limiting amounts (∼10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1239-1251 ◽  
Author(s):  
Loïc Giot ◽  
Roland Chanet ◽  
Michel Simon ◽  
Céline Facca ◽  
Gérard Faye

The POL3 encoded catalytic subunit of DNA polymerase δ possesses a highly conserved C-terminal cysteine-rich domain in Saccharomyces cerevisiae. Mutations in some of its cysteine codons display a lethal phenotype, which demonstrates an essential function of this domain. The thermosensitive mutant pol3-13, in which a serine replaces a cysteine of this domain, exhibits a range of defects in DNA repair, such as hypersensitivity to different DNA-damaging agents and deficiency for induced mutagenesis and for recombination. These phenotypes are observed at 24°, a temperature at which DNA replication is almost normal; this differentiates the functions of POL3 in DNA repair and DNA replication. Since spontaneous mutagenesis and spontaneous recombination are efficient in pol3-13, we propose that POL3 plays an important role in DNA repair after irradiation, particularly in the error-prone and recombinational pathways. Extragenic suppressors of pol3-13 are allelic to sdp5-1, previously identified as an extragenic suppressor of pol3-11. SDP5, which is identical to HYS2, encodes a protein homologous to the p50 subunit of bovine and human DNA polymerase δ. SDP5 is most probably the p55 subunit of Polδ of S. cerevisiae and seems to be associated with the catalytic subunit for both DNA replication and DNA repair.


Sign in / Sign up

Export Citation Format

Share Document