random mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

802
(FIVE YEARS 125)

H-INDEX

66
(FIVE YEARS 7)

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3159
Author(s):  
Sheyma Khemiri ◽  
Maria Cristiana Nunes ◽  
Rui J. B. Bessa ◽  
Susana P. Alves ◽  
Issam Smaali ◽  
...  

The aim of this work was to develop functional couscous in a traditional Tunisian manner (hand rolling), enriched in algae biomass (6% w/w). Four Chlorella vulgaris (C. vulgaris) biomasses and one mixture of C. vulgaris and two macroalgae biomasses (Ulva rigida and Fucus vesiculosus) were used. The C. vulgaris strain was subjected to random mutagenesis and different culture conditions (Allmicroalgae), resulting in different pigmentations and biochemical compositions. Couscous samples were characterized in terms of nutritional properties, oscillatory rheology properties and digestibility. All biomasses provided a significant supplementation of nutrients and excellent acceptance. The enrichment resulted in lower firmness, higher viscoelastic functions (G′ and G″) and a significant improvement in the cooking quality. Major differences between couscous samples with different microalgae were observed in protein and mineral contents, fully meeting Regulation (EC) No. 1924/2006 requirements for health claims made on foodstuffs. The amount of digested proteins was also higher in algae-containing samples. The fatty acid profile of the enriched couscous varied in a biomass-specific way, with a marked increase in linolenic acid (18:3 ω3) and a decrease in the ω6/ω3 ratio. Sensory analysis revealed that microalgae-containing products could compete with conventional goods with an added advantage, that is, having an ameliorated nutritional value using algae as a “trendy” and sustainable ingredient.


Author(s):  
Marten Linder ◽  
Markus Haak ◽  
Angela Botes ◽  
Jörn Kalinowski ◽  
Christian Rückert

Mobile genetic elements (MGEs) contribute to instability of the host genome and plasmids. Previously, removal of the prophages in the industrial amino acid producer Corynebacterium glutamicum ATCC 13 032 resulted in strain MB001 which showed better survival under stress conditions and increased transformability. Still, eight families of Insertion Sequence (IS) elements with 27 potentially active members remain in MB001, two of which were demonstrated to be detrimental in biotechnological processes. In this study, systematical deletion of all complete IS elements in MB001 resulted in the MGE-free strain CR101. CR101 shows growth characteristics identical to the wildtype and the increased transformability of MB001. Due to its improved genome stability, we consider this strain to be an optimal host for basic research and biotechnology. As a “zero-background” host, it is also an ideal basis to study C. glutamicum IS elements. Re-sequencing of CR101 revealed that only five spontaneous point mutations had occurred during the construction process, highlighting the low mutation rate of C. glutamicum on the nucleotide level. In a second step, we developed an easily applicable ISCg1-based transposon mutagenesis system to randomly transpose a selectable marker. For optimal plasmid stability during cloning in Escherichia coli, the system utilizes a genetic switch based on the phage integrase Bxb1. Use of this integrase revealed the presence of a functional attB site in the C. glutamicum genome. To avoid cross-talk with our system and increase ease-of-use, we removed the attB site and also inserted the Bxb1 encoding gene into the chromosome of CR101. Successful insertion of single markers was verified by sequencing randomly selected mutants. Sequencing pooled mutant libraries revealed only a weak target site specificity, seemingly random distribution of insertion sites and no general strand bias. The resulting strain, ML103, together with plasmid pML10 provides a easily customizable system for random mutagenesis in an otherwise genomically stable C. glutamicum. Taken together, the MGE-free C. glutamicum strain CR101, the derivative ML103, and the plasmid pML10 provide a useful set of tools to study C. glutamicum in the future.


2021 ◽  
pp. 43-86
Author(s):  
Yves Bertheau ◽  

Transgenic GMOs were welcomed in the 1990s due to the difficulties distinguishing genetic and epigenetic modifications from random mutagenesis and their ability to insert new nucleic sequences more rapidly but still randomly. Their marketing in Europe has been accompanied by health and environmental risk assessments, specific monitoring and traceability procedures to preserve the free choice of consumers and allow the coexistence of different supply chains. This chapter reviews the regulations, detection techniques, strategies and standards that have been put in place in the European Union since 1996 to ensure the analytical traceability of these GMOs. The capacity of the matrix approach, initially targeted at transgenic GMOs, to trace other types of GMOs is discussed in an accompanying chapter.


2021 ◽  
pp. 106028
Author(s):  
Aliakbar Fazaeli ◽  
Saeed Ebrahimi Fana ◽  
Abolfazl Golestani ◽  
Mahdi Aminian

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyo Ju Choi ◽  
Minsik Kim

AbstractAs antibiotic resistance is being a threat to public health worldwide, bacteriophages are re-highlighted as alternative antimicrobials to fight with pathogens. Various wild-type phages isolated from diverse sources have been tested, but potential mutant phages generated by genome engineering or random mutagenesis are drawing increasing attention. Here, we applied a chelating agent, sodium pyrophosphate, to the staphylococcal temperate Siphoviridae phage SA3821 to introduce random mutations. Through 30 sequential sodium pyrophosphate challenges and random selections, the suspected mutant phage SA3821M was isolated. SA3821M maintained an intact virion morphology, but exhibited better bactericidal activity against its host Staphylococcous aureus CCARM 3821 for up to 17 h and thermostability than its parent, SA3821. Sodium pyrophosphate-mediated mutations in SA3821M were absent in lysogenic development genes but concentrated (83.9%) in genes related to the phage tail, particularly in the tail tape measure protein, indicating that changes in the tail module might have been responsible for the altered traits. This intentional random mutagenesis through controlled treatments with sodium pyrophosphate could be applied to other phages as a simple but potent method to improve their traits as alternative antimicrobials.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhi-Qing Peng ◽  
Chuang Li ◽  
Yi Lin ◽  
Sheng-Shan Wu ◽  
Li-Hui Gan ◽  
...  

Abstract Background Cellulase plays a key role in converting cellulosic biomass into fermentable sugar to produce chemicals and fuels, which is generally produced by filamentous fungi. However, most of the filamentous fungi obtained by natural breeding have low secretory capacity in cellulase production, which are far from meeting the requirements of industrial production. Random mutagenesis combined with adaptive laboratory evolution (ALE) strategy is an effective method to increase the production of fungal enzymes. Results This study obtained a mutant of Trichoderma afroharzianum by exposures to N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), Ethyl Methanesulfonate (EMS), Atmospheric and Room Temperature Plasma (ARTP) and ALE with high sugar stress. The T. afroharzianum mutant MEA-12 produced 0.60, 5.47, 0.31 and 2.17 IU/mL FPase, CMCase, pNPCase and pNPGase, respectively. These levels were 4.33, 6.37, 4.92 and 4.15 times higher than those of the parental strain, respectively. Also, it was found that T. afroharzianum had the same carbon catabolite repression (CCR) effect as other Trichoderma in liquid submerged fermentation. In contrast, the mutant MEA-12 can tolerate the inhibition of glucose (up to 20 mM) without affecting enzyme production under inducing conditions. Interestingly, crude enzyme from MEA-12 showed high enzymatic hydrolysis efficiency against three different biomasses (cornstalk, bamboo and reed), when combined with cellulase from T. reesei Rut-C30. In addition, the factors that improved cellulase production by MEA-12 were clarified. Conclusions Overall, compound mutagenesis combined with ALE effectively increased the production of fungal cellulase. A super-producing mutant MEA-12 was obtained, and its cellulase could hydrolyze common biomasses efficiently, in combination with enzymes derived from model strain T. reesei, which provides a new choice for processing of bioresources in the future.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6636
Author(s):  
Alexander A. Zhgun ◽  
Mikhail A. Eldarov

The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of β-lactams in the Penicillium chrysogenum Wis 54–1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15–20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.


EFSA Journal ◽  
2021 ◽  
Vol 19 (11) ◽  
Author(s):  
◽  
Ewen Mullins ◽  
Jean‐Louis Bresson ◽  
Tamas Dalmay ◽  
Ian Crawford Dewhurst ◽  
...  
Keyword(s):  

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121380
Author(s):  
Amruta Prakash ◽  
Chandrahasya Namdev Khobragade ◽  
Rajaram Sakharam Mane

Sign in / Sign up

Export Citation Format

Share Document