intracellular signaling pathway
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 39)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Cyrine Ben Dhaou ◽  
Annalisa Del Prete ◽  
Silvano Sozzani ◽  
Marc Parmentier

Chemerin is a multifunctional protein involved in the regulation of inflammation, metabolism, and tumorigenesis. It binds to three receptors, CMKLR1, GPR1 and CCRL2. CMKLR1 is a fully functional receptor mediating most of the known activities of chemerin. CCRL2 does not seem to couple to any intracellular signaling pathway and is presently considered as an atypical receptor able to present the protein to cells expressing CMKLR1. CCRL2 is expressed by many cell types including leukocyte subsets and endothelial cells, and its expression is strongly upregulated by inflammatory stimuli. We recently reported that chemerin can negatively regulate the angiogenesis process, including during the development of the vascular network in mouse retina. The role of CCRL2 in angiogenesis was unexplored so far. In the present work, we demonstrate that mice lacking CCRL2 exhibit a lower density of vessels in the developing retina and this phenotype persists in adulthood, in a CMKLR1-dependent manner. Vascular sprouting was not affected, while vessel pruning, and endothelial cell apoptosis were increased. Pathological angiogenesis was also reduced in CCRL2-/- mice in a model of oxygen-induced retinopathy. The phenotype closely mimics that of mice overexpressing chemerin, and the concentration of chemerin was found elevated in the blood of newborn mice, when the retinal vasculature develops. CCRL2 appears therefore to regulate the distribution and concentration of chemerin in organs, regulating thereby its bioactivity.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shulan Han ◽  
Wenyan Ma ◽  
Dawei Jiang ◽  
Logan Sutherlin ◽  
Jing Zhang ◽  
...  

Abstract Background Poly(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles have potential applications as a vaccine adjuvant and delivery system due to its unique advantages as biodegradability and biocompatibility. Experimental We fabricated cationic solid lipid nanoparticles using PLGA and dimethyl-dioctadecyl-ammonium bromide (DDAB), followed by loading of model antigen OVA (antigen ovalbumin, OVA257-264) to form an OVA@DDAB/PLGA nano-vaccine. And we investigated the intracellular signaling pathway in dendritic cells in vitro and antigen transport pathway and immune response in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. Results In vitro experiments revealed that the antigen uptake of BMDCs after nanovaccine incubation was two times higher than pure OVA or OVA@Al at 12 h. The BMDCs were well activated by p38 MAPK signaling pathway. Furthermore, the nano-vaccine induced antigen escape from lysosome into cytoplasm with 10 times increased cross-presentation activity than those of OVA or OVA@Al. Regarding the transport of antigen into draining lymph nodes (LNs), the nano-vaccine could rapidly transfer antigen to LNs by passive lymphatic drainage and active DC transport. The antigen+ cells in inguinal/popliteal LNs for the nano-vaccine were increased over two folds comparing to OVA@Al and OVA at 12 h. Moreover, the antigen of nano-vaccine stayed in LNs for over 7 days, germinal center formation over two folds higher than those of OVA@Al and OVA. After immunization, the nano-vaccine induced a much higher ratio of IgG2c/IgG1 than OVA@Al. It also effectively activated CD4+ T, CD8+ T and B cells for immune memory with a strong cellular response. Conclusion These results indicated that DDAB/PLGA NP was a potent platform to improve vaccine immunogenicity by p38 signaling pathway in BMDCs, enhancing transport of antigens to LNs, and higher immunity response. Graphical Abstract


2021 ◽  
Vol 13 ◽  
Author(s):  
Samantha L. Gardener ◽  
Stephanie R. Rainey-Smith ◽  
Michael Weinborn ◽  
Catherine P. Bondonno ◽  
Ralph N. Martins

The purpose of this review is to examine human research studies published within the past 6 years which evaluate the role of anthocyanin, flavanol, and flavanone consumption in cognitive function, and to discuss potential mechanisms of action underlying any observed benefits. Evidence to date suggests the consumption of flavonoid-rich foods, such as berries and cocoa, may have the potential to limit, or even reverse, age-related declines in cognition. Over the last 6 years, the flavonoid subgroups of anthocyanins, flavanols, and flavanones have been shown to be beneficial in terms of conferring neuroprotection. The mechanisms by which flavonoids positively modulate cognitive function are yet to be fully elucidated. Postulated mechanisms include both direct actions such as receptor activation, neurotrophin release and intracellular signaling pathway modulation, and indirect actions such as enhancement of cerebral blood flow. Further intervention studies conducted in diverse populations with sufficient sample sizes and long durations are required to examine the effect of consumption of flavonoid groups on clinically relevant cognitive outcomes. As populations continue to focus on adopting healthy aging strategies, dietary interventions with flavonoids remains a promising avenue for future research. However, many questions are still to be answered, including identifying appropriate dosage, timeframes for intake, as well as the best form of flavonoids, before definitive conclusions can be drawn about the extent to which their consumption can protect the aging brain.


2021 ◽  
Vol 22 (15) ◽  
pp. 8063
Author(s):  
Rosaria Ornella Bua ◽  
Angela Messina ◽  
Luisa Sturiale ◽  
Rita Barone ◽  
Domenico Garozzo ◽  
...  

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 892
Author(s):  
Hiroki Shimada ◽  
Yuto Yamazaki ◽  
Akira Sugawara ◽  
Hironobu Sasano ◽  
Yasuhiro Nakamura

The adrenal cortex produces steroid hormones as adrenocortical hormones in the body, secreting mineralocorticoids, glucocorticoids, and adrenal androgens, which are all considered essential for life. Adrenocortical tumors harbor divergent hormonal activity, frequently with steroid excess, and disrupt homeostasis of the body. Aldosterone-producing adenomas (APAs) cause primary aldosteronism (PA), and cortisol-producing adenomas (CPAs) are the primary cause of Cushing’s syndrome. In addition, adrenocortical carcinoma (ACC) is a highly malignant cancer harboring poor prognosis. Various genetic abnormalities have been reported, which are associated with possible pathogenesis by the alteration of intracellular signaling and activation of transcription factors. In particular, somatic mutations in APAs have been detected in genes encoding membrane proteins, especially ion channels, resulting in hypersecretion of aldosterone due to activation of intracellular calcium signaling. In addition, somatic mutations have been detected in those encoding cAMP-PKA signaling-related factors, resulting in hypersecretion of cortisol due to its driven status in CPAs. In ACC, mutations in tumor suppressor genes and Wnt-β-catenin signaling-related factors have been implicated in its pathogenesis. In this article, we review recent findings on the genetic characteristics and regulation of intracellular signaling and transcription factors in individual tumors.


Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 75
Author(s):  
Naomi Rapier-Sharman ◽  
John Krapohl ◽  
Ethan J. Beausoleil ◽  
Kennedy T. L. Gifford ◽  
Benjamin R. Hinatsu ◽  
...  

Publicly available RNA-sequencing (RNA-seq) data are a rich resource for elucidating the mechanisms of human disease; however, preprocessing these data requires considerable bioinformatic expertise and computational infrastructure. Analyzing multiple datasets with a consistent computational workflow increases the accuracy of downstream meta-analyses. This collection of datasets represents the human intracellular transcriptional response to disorders and diseases such as acute lymphoblastic leukemia (ALL), B-cell lymphomas, chronic obstructive pulmonary disease (COPD), colorectal cancer, lupus erythematosus; as well as infection with pathogens including Borrelia burgdorferi, hantavirus, influenza A virus, Middle East respiratory syndrome coronavirus (MERS-CoV), Streptococcus pneumoniae, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We calculated the statistically significant differentially expressed genes and Gene Ontology terms for all datasets. In addition, a subset of the datasets also includes results from splice variant analyses, intracellular signaling pathway enrichments as well as read mapping and quantification. All analyses were performed using well-established algorithms and are provided to facilitate future data mining activities, wet lab studies, and to accelerate collaboration and discovery.


Author(s):  
Rosaria Ornella Bua ◽  
Angela Messina ◽  
Luisa Sturiale ◽  
Rita Barone ◽  
Domenico Garozzo ◽  
...  

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies were carried out, glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine, core- and/or an-tennary fucosylation. In the higher mass region these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as to understand pathogens molecular recognition.


Author(s):  
Julia Winter ◽  
Magdalena Meyer ◽  
Ilona Berger ◽  
Melanie Royer ◽  
Marta Bianchi ◽  
...  

AbstractThe neuropeptide oxytocin (OXT) has generated considerable interest as potential treatment for psychiatric disorders, including anxiety and autism spectrum disorders. However, the behavioral and molecular consequences associated with chronic OXT treatment and chronic receptor (OXTR) activation have scarcely been studied, despite the potential therapeutic long-term use of intranasal OXT. Here, we reveal that chronic OXT treatment over two weeks increased anxiety-like behavior in rats, with higher sensitivity in females, contrasting the well-known anxiolytic effect of acute OXT. The increase in anxiety was transient and waned 5 days after the infusion has ended. The behavioral effects of chronic OXT were paralleled by activation of an intracellular signaling pathway, which ultimately led to alternative splicing of hypothalamic corticotropin-releasing factor receptor 2α (Crfr2α), an important modulator of anxiety. In detail, chronic OXT shifted the splicing ratio from the anxiolytic membrane-bound (mCRFR2α) form of CRFR2α towards the soluble CRFR2α (sCRFR2α) form. Experimental induction of alternative splicing mimicked the anxiogenic effects of chronic OXT, while sCRFR2α-knock down reduced anxiety-related behavior of male rats. Furthermore, chronic OXT treatment triggered the release of sCRFR2α into the cerebrospinal fluid with sCRFR2α levels positively correlating with anxiety-like behavior. In summary, we revealed that the shifted splicing ratio towards expression of the anxiogenic sCRFR2α underlies the adverse effects of chronic OXT treatment on anxiety.


2021 ◽  
Vol 22 (8) ◽  
pp. 4024
Author(s):  
Lee-Wen Chen ◽  
Shie-Shan Wang ◽  
Chien-Hui Hung ◽  
Ya-Hui Hung ◽  
Chun-Liang Lin ◽  
...  

The unfolded protein response (UPR) is an intracellular signaling pathway essential for alleviating the endoplasmic reticulum (ER) stress. To support the productive infection, many viruses are known to use different strategies to manipulate the UPR signaling network. However, it remains largely unclear whether the UPR signaling pathways are modulated in the lytic cycle of Epstein-Barr virus (EBV), a widely distributed human pathogen. Herein, we show that the expression of GRP78, a central UPR regulator, is up-regulated during the EBV lytic cycle. Our data further revealed that knockdown of GRP78 in EBV-infected cell lines did not substantially affect lytic gene expression; however, GRP78 knockdown in these cells markedly reduced the production of virus particles. Importantly, we identified that the early lytic protein BMLF1 is the key regulator critically contributing to the activation of the grp78 gene promoter. Mechanistically, we found that BMLF1 can trigger the proteolytic cleavage and activation of the UPR senor ATF6, which then transcriptionally activates the grp78 promoter through the ER stress response elements. Our findings therefore provide evidence for the connection between the EBV lytic cycle and the UPR, and implicate that the BMLF1-mediated ATF6 activation may play critical roles in EBV lytic replication.


2021 ◽  
Vol 22 (7) ◽  
pp. 3464
Author(s):  
Rosalin Mishra ◽  
Hima Patel ◽  
Samar Alanazi ◽  
Mary Kate Kilroy ◽  
Joan T. Garrett

The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.


Sign in / Sign up

Export Citation Format

Share Document