scholarly journals Effects of Abiotic Factors on the Geographic Distribution of Body Size Variation and Chromosomal Polymorphisms in Two Neotropical Grasshopper Species (Dichroplus: Melanoplinae: Acrididae)

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Claudio J. Bidau ◽  
Carolina I. Miño ◽  
Elio R. Castillo ◽  
Dardo A. Martí

We review the effects of abiotic factors on body size in two grasshopper species with large geographical distributions:Dichroplus pratensisandD. vittatus, inhabiting Argentina in diverse natural habitats. Geographical spans for both species provide an opportunity to study the effects of changes in abiotic factors on body size. The analyses of body size distribution in both species revealed a converse Bergmannian pattern: body size is positively correlated with latitude, altitude, and seasonality that influences time available for development and growth. Allen’s rule is also inverted. Morphological variability increases towards the ends of the Bergmannian clines and, inD. pratensis, is related with a central-marginal distribution of chromosomal variants that influence recombination. The converse Bergmannian patterns influence sexual size dimorphism in both species but in different fashions. Body size variation at a microspatial scale inD. pratensisis extremely sensitive to microclimatic clines. We finally compare our results with those for other Orthopteran species.

2018 ◽  
Vol 96 (11) ◽  
pp. 1196-1202 ◽  
Author(s):  
Brett A. DeGregorio ◽  
Gabriel Blouin-Demers ◽  
Gerardo L.F. Carfagno ◽  
J. Whitfield Gibbons ◽  
Stephen J. Mullin ◽  
...  

Because body size affects nearly all facets of an organism’s life history, ecologists have long been interested in large-scale patterns of body-size variation, as well as why those large-scale patterns often differ between sexes. We explored body-size variation across the range of the sexually dimorphic Ratsnake complex (species of the genus Pantherophis Fitzinger, 1843 s.l.; formerly Elaphe obsoleta (Say in James, 1823)) in North America. We specifically explored whether variation in body size followed latitudinal patterns or varied with climatic variables. We found that body size did not conform to a climatic or latitudinal gradient, but instead, some of the populations with the largest snakes occurred near the core of the geographic range and some with the smallest occurred near the northern, western, and southern peripheries of the range. Males averaged 14% larger than females, although the degree of sexual size dimorphism varied between populations (range: 2%–25%). There was a weak trend for male body size to change in relation to temperature, whereas female body size did not. Our results indicate that relationships between climate and an ectotherm’s body size are more complicated than linear latitudinal clines and likely differ for males and females.


2017 ◽  
Vol 43 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Javier Goldberg ◽  
Darío Cardozo ◽  
Francisco Brusquetti ◽  
Diego Bueno Villafañe ◽  
Andrea Caballero Gini ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 149-161
Author(s):  
Raisa A Sukhodolskaya ◽  
Anatoly A Saveliev ◽  
Nadezhda L Ukhova ◽  
Iraida G Vorobyova ◽  
Igor A Solodovnikov ◽  
...  

Fleshing out the mechanisms of Bergmann rule, we found saw-tooth pattern in body size variation in ground beetle Pterostichus oblongopunctatus. We sampled beetles in 2010 – 2018 at the forest undisturbed plots on the broad territory in Russia and Belarus. Investigating regions covered territory, extending to 3 degrees latitude and 31 degrees longitude. We measured six traits in every of 3294 caught individuals. ANOVA showed that geographical location and sex affected significantly body size of the species studied. Mean values of each trait changed significantly from one studied region to another in females and males as well. Sexual size dimorphism in species was female-biased. We performed models in R to estimate the steepness of body size variation in both sexes. In overwhelming majority of cases that parameter was equal in both sexes. So the hypothesis, that male′s variation is steeper in latitude gradient was not confirmed.


Author(s):  
Raisa Sukhodolskaya ◽  
Anatoliy Saveliev ◽  
Nadezhda Ukhova ◽  
Iraida Vorobyova ◽  
Igor Solodovnikov ◽  
...  

Concretizing the mechanisms of Bergmann rule, we found saw-tooth pattern in body size variation in ground beetle Pterostichus oblongopunctatus. We sampled beetles in 2010 – 2018 at the forest undisturbed plots on the broad territory in Russia. Investigating regions covered territory, extending to 3 degrees latitude and 19 degrees longitude. We measured six traits in every of 3294 caught individual. ANOVA showed that latitude, and sex affected significantly body size of the species studied. Mean values of each trait changed significantly from one studied region to another in females and males as well. Sexual size dimorphism in species was female-biased. We performed models in R to estimate the steepness of body size variation in both sexes. In overwhelming majority of cases that parameter was equal in both sexes. So the hypothesis, that male′s variation is steeper in latitude gradient was not confirmed.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingying Sun ◽  
Yanzhi Liu ◽  
Xiaohui Sun ◽  
Yurui Lin ◽  
Daiqing Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document