scholarly journals Mammalian body size is determined by interactions between climate, urbanization, and ecological traits

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.

Author(s):  
Maggie Hantak ◽  
Bryan McLean ◽  
Daijiang Li ◽  
Robert Guralnick

Anthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size change across urbanization gradients; urban heat island effects, fragmentation, and resource availability. Our results unexpectedly demonstrate urbanization is more tightly linked with body size changes than temperature, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history traits, such as thermal buffering, activity time, and average body size play critical roles in mediating the effects of both climate and urbanization on intraspecific body size trends. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological change.


2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingying Sun ◽  
Yanzhi Liu ◽  
Xiaohui Sun ◽  
Yurui Lin ◽  
Daiqing Yin ◽  
...  

2019 ◽  
Vol 66 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Bader H Alhajeri ◽  
Lucas M V Porto ◽  
Renan Maestri

Abstract The “resource availability hypothesis” predicts occurrence of larger rodents in more productive habitats. This prediction was tested in a dataset of 1,301 rodent species. We used adult body mass as a measure of body size and normalized difference vegetation index (NDVI) as a measure of habitat productivity. We utilized a cross-species approach to investigate the association between these variables. This was done at both the order level (Rodentia) and at narrower taxonomic scales. We applied phylogenetic generalized least squares (PGLS) to correct for phylogenetic relationships. The relationship between body mas and NDVI was also investigated across rodent assemblages. We controlled for spatial autocorrelation using generalized least squares (GLS) analysis. The cross-species approach found extremely low support for the resource availability hypothesis. This was reflected by a weak positive association between body mass and NDVI at the order level. We find a positive association in only a minority of rodent subtaxa. The best fit GLS model detected no significant association between body mass and NDVI across assemblages. Thus, our results do not support the view that resource availability plays a major role in explaining geographic variation in rodent body size.


2018 ◽  
Vol 96 (11) ◽  
pp. 1196-1202 ◽  
Author(s):  
Brett A. DeGregorio ◽  
Gabriel Blouin-Demers ◽  
Gerardo L.F. Carfagno ◽  
J. Whitfield Gibbons ◽  
Stephen J. Mullin ◽  
...  

Because body size affects nearly all facets of an organism’s life history, ecologists have long been interested in large-scale patterns of body-size variation, as well as why those large-scale patterns often differ between sexes. We explored body-size variation across the range of the sexually dimorphic Ratsnake complex (species of the genus Pantherophis Fitzinger, 1843 s.l.; formerly Elaphe obsoleta (Say in James, 1823)) in North America. We specifically explored whether variation in body size followed latitudinal patterns or varied with climatic variables. We found that body size did not conform to a climatic or latitudinal gradient, but instead, some of the populations with the largest snakes occurred near the core of the geographic range and some with the smallest occurred near the northern, western, and southern peripheries of the range. Males averaged 14% larger than females, although the degree of sexual size dimorphism varied between populations (range: 2%–25%). There was a weak trend for male body size to change in relation to temperature, whereas female body size did not. Our results indicate that relationships between climate and an ectotherm’s body size are more complicated than linear latitudinal clines and likely differ for males and females.


2020 ◽  
Vol 10 (16) ◽  
pp. 8936-8948
Author(s):  
Daniel Acquah‐Lamptey ◽  
Martin Brändle ◽  
Roland Brandl ◽  
Stefan Pinkert

2008 ◽  
Vol 53 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Boris Kryštufek ◽  
Aila Quadracci

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Fidelis T Masao ◽  
Elgidius B Ichumbaki ◽  
Marco Cherin ◽  
Angelo Barili ◽  
Giovanni Boschian ◽  
...  

Laetoli is a well-known palaeontological locality in northern Tanzania whose outstanding record includes the earliest hominin footprints in the world (3.66 million years old), discovered in 1978 at Site G and attributed to Australopithecus afarensis. Here, we report hominin tracks unearthed in the new Site S at Laetoli and referred to two bipedal individuals (S1 and S2) moving on the same palaeosurface and in the same direction as the three hominins documented at Site G. The stature estimates for S1 greatly exceed those previously reconstructed for Au. afarensis from both skeletal material and footprint data. In combination with a comparative reappraisal of the Site G footprints, the evidence collected here embodies very important additions to the Pliocene record of hominin behaviour and morphology. Our results are consistent with considerable body size variation and, probably, degree of sexual dimorphism within a single species of bipedal hominins as early as 3.66 million years ago.


Sign in / Sign up

Export Citation Format

Share Document