thermal buffering
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Anqi Huang ◽  
Runping Shen ◽  
Gensuo Jia ◽  
Xiyan Xu

Abstract Deforestation-induced landscape fragmentation causes habitat loss and isolation, modifies local climate, and therefore threatens biodiversity. While, on the contrary, how large-scale reforestation may improve the connectivity and thermal buffers of habitats is not well understood. We show that decades long large-scale reforestation in China has effectively increased the size and connectivity of forest patches by gradually filling gaps among isolated patches and creating more core forests. The core forests have a stronger capacity to cool the land surface, leading to a daily mean cooling effect of -0.42±0.23°C relative to nearby marginal forests. Moreover, the core forests reduce diurnal range and seasonal variation of land surface temperature by 1.41±0.23°C and 0.42±0.55°C, respectively, relative to nearby marginal forests. The thermal buffering capacity of large size core forest (>100km2) is more than twice that of small size (≤10km2). Despite their relatively low thermal buffering capacity, the marginal forests contribute about 73% to the increase of forest area in China during the last two decades and create buffer zones for the core forests to resist external disturbances, maintaining the internal stability of the forest ecosystem. We highlight that improving the integrity and connectivity of the forests with ecological restoration and succession can further enhance potential of forests to buffer local thermal environment under the current reforestation efforts, and thereby providing better connected thermal habitats for species to survive under climate change.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2021 ◽  
Vol 38 ◽  
pp. 102499
Author(s):  
Vennapusa Jagadeeswara Reddy ◽  
Konala Akhila ◽  
Prakhar Dixit ◽  
Jitendra Singh ◽  
Sumit Parvate ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Danielle K. Hare ◽  
Ashley M. Helton ◽  
Zachary C. Johnson ◽  
John W. Lane ◽  
Martin A. Briggs

AbstractGroundwater discharge generates streamflow and influences stream thermal regimes. However, the water quality and thermal buffering capacity of groundwater depends on the aquifer source-depth. Here, we pair multi-year air and stream temperature signals to categorize 1729 sites across the continental United States as having major dam influence, shallow or deep groundwater signatures, or lack of pronounced groundwater (atmospheric) signatures. Approximately 40% of non-dam stream sites have substantial groundwater contributions as indicated by characteristic paired air and stream temperature signal metrics. Streams with shallow groundwater signatures account for half of all groundwater signature sites and show reduced baseflow and a higher proportion of warming trends compared to sites with deep groundwater signatures. These findings align with theory that shallow groundwater is more vulnerable to temperature increase and depletion. Streams with atmospheric signatures tend to drain watersheds with low slope and greater human disturbance, indicating reduced stream-groundwater connectivity in populated valley settings.


2021 ◽  
Vol 35 (3) ◽  
pp. 2704-2716
Author(s):  
Prakhar Dixit ◽  
Jagadeeswara Reddy Vennapusa ◽  
Sumit Parvate ◽  
Jitendra Singh ◽  
Aravind Dasari ◽  
...  

Author(s):  
Maggie Hantak ◽  
Bryan McLean ◽  
Daijiang Li ◽  
Robert Guralnick

Anthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size change across urbanization gradients; urban heat island effects, fragmentation, and resource availability. Our results unexpectedly demonstrate urbanization is more tightly linked with body size changes than temperature, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history traits, such as thermal buffering, activity time, and average body size play critical roles in mediating the effects of both climate and urbanization on intraspecific body size trends. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological change.


2020 ◽  
Vol 253 ◽  
pp. 123453
Author(s):  
Jagadeeswara Reddy Vennapusa ◽  
Akhila Konala ◽  
Prakhar Dixit ◽  
Sujay Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document