scholarly journals New Results on Stability and Stabilization of Markovian Jump Systems with Partly Known Transition Probabilities

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yafeng Guo ◽  
Fanglai Zhu

This paper investigates the problem of stability and stabilization of Markovian jump linear systems with partial information on transition probability. A new stability criterion is obtained for these systems. Comparing with the existing results, the advantage of this paper is that the proposed criterion has fewer variables, however, does not increase any conservatism, which has been proved theoretically. Furthermore, a sufficient condition for the state feedback controller design is derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jumei Wei ◽  
Rui Ma

This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yanling Wei ◽  
Mao Wang ◽  
Hamid Reza Karimi ◽  
Nan Wang ◽  
Jianbin Qiu

This paper investigates the problem ofℋ∞model reduction for a class of discrete-time Markovian jump linear systems (MJLSs) with deficient mode information, which simultaneously involves the exactly known, partially unknown, and uncertain transition probabilities. By fully utilizing the properties of the transition probability matrices, together with the convexification of uncertain domains, a newℋ∞performance analysis criterion for the underlying MJLSs is first derived, and then two approaches, namely, the convex linearisation approach and iterative approach, for theℋ∞model reduction synthesis are proposed. Finally, a simulation example is provided to illustrate the effectiveness of the proposed design methods.


2013 ◽  
Vol 91 (12) ◽  
pp. 1020-1028 ◽  
Author(s):  
Jun Cheng ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Yuping Zhang ◽  
Guihua Li

This paper addresses the problems of finite-time stochastic stability and stabilization for linear Markovian jump systems subject to partial information on the transition probabilities. By introducing bounded finite time and stochastic character, sufficient conditions that can ensure bounded finite time and H∞ finite-time bounded filtering are derived. Finally, an example is given to illustrate the efficiency of the proposed method.


2021 ◽  
pp. 107754632198920
Author(s):  
Zeinab Fallah ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati ◽  
Farzad Hashemzadeh

This study considers the designing of the H ∞ sliding mode controller for a singular Markovian jump system described by discrete-time state-space realization. The system under investigation is subject to both matched and mismatched external disturbances, and the transition probability matrix of the underlying Markov chain is considered to be partly available. A new sufficient condition is developed in terms of linear matrix inequalities to determine the mode-dependent parameter of the proposed quasi-sliding surface such that the stochastic admissibility with a prescribed H ∞ performance of the sliding mode dynamics is guaranteed. Furthermore, the sliding mode controller is designed to assure that the state trajectories of the system will be driven onto the quasi-sliding surface and remain in there afterward. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design algorithms.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Guoliang Wang ◽  
Hongyi Li

This paper considers the H∞ control problem for a class of singular Markovian jump systems (SMJSs), where the jumping signal is not always available. The main contribution of this paper introduces a new approach to a mode-independent (MI) H∞ controller by exploiting the nonfragile method. Based on the given method, a unified control approach establishing a direct connection between mode-dependent (MD) and mode-independent controllers is presented, where both existence conditions are given in terms of linear matrix inequalities. Moreover, another three cases of transition probability rate matrix (TRPM) with elementwise bounded uncertainties, being partially unknown and to be designed are analyzed, respectively. Numerical examples are used to demonstrate the effectiveness of the proposed methods.


2012 ◽  
Vol 235 ◽  
pp. 254-258 ◽  
Author(s):  
Shao Hua Long ◽  
Shou Ming Zhong

The problem of the stochastic admissibility for a class of nonlinear singular Markovian jump systems with time-delay and partially unknown transition probabilities is discussed in this note. The considered singular matrices Er(t) in the discussed system are mode-dependent. By using the free-weighting matrix method and the Lyapunov functional method, a sufficient condition which guarantees the considered system to be stochastically admissible is presented in the form of linear matrix inequalities(LMIs). Finally, a numerical example is given to show the effectiveness of the presented method.


Sign in / Sign up

Export Citation Format

Share Document