scholarly journals Stability Problem of Wave Variable Based Bilateral Control: Influence of the Force Source Design

2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Dapeng Tian ◽  
Bao Zhang ◽  
Honghai Shen ◽  
Jiaquan Li

The wave variable has been proposed to achieve robust stability against the time delay in bilateral control system. However, the influence of the force source on the overall system is still not clear. This paper analyzes this problem and proposes a supplement to the stability analysis for wave variable based bilateral control. Based on the scattering theory, it is pointed out that the design of force source decides the passivity of the two-port network of slave robot. This passivity influences the stability of overall system. Based on the characteristic equation and small gain theorem, it is clear that inappropriate designed force source in encoding the wave variable destroys the stability in the presence of time delay. A wave domain filter makes up for the broken stability. The principle of this reparation is explained in this paper. A reference is also provided by the analysis to design the parameter of the wave domain filter. Experiments prove the correctness and validity.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan Ren ◽  
Xiaocen Chen ◽  
Yuanwen Cai ◽  
Weijie Wang

This paper analyzes the effects of time delay on the stability of the rotation modes for the magnetically suspended flywheel (MSFW) with strong gyroscopic effects. A multi-input multioutput system is converted into a single-input single-output control system with complex coefficient by variable reconstruction, and the stability equivalence of the systems before and after variable reconstruction is proven. For the rotation modes, the stability limits and corresponding vibration frequencies are found as a function of nondimensional magnetic stiffness and damping and nondimensional parameters of rotor speed and time delay. Additionally, the relationship between cross feedback control system stability and time delay is investigated. And an effective phase compensation method based on cross-channel is further presented. Simulation and experimental results are presented to demonstrate the correctness of the stability analysis method and the superiority of the phase compensation strategy.


2010 ◽  
Vol 36 ◽  
pp. 233-242 ◽  
Author(s):  
Yoshinori Ando ◽  
Kou Yamada ◽  
Nobuaki Nakazawa ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
...  

In this paper, we examine the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants. The modified repetitive control system is a type of servomechanism designed for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. The stability problem with uncertainty is known as the robust stability problem. Recently, the parameterization of all stabilizing modified repetitive controllers was obtained. Since the parameterization of all stabilizing modified repetitive controllers was obtained, we can express previous study of robust stabilizing modified repetitive controller in a uniform manner and can design a stabilizing modified repetitive controller systematically. However, the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants has not been obtained. In this paper, we clarify the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants.


2015 ◽  
Vol 135 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Daisuke Yashiro ◽  
Tadashi Hieno ◽  
Kazuhiro Yubai ◽  
Satoshi Komada

2021 ◽  
pp. 1-1
Author(s):  
Majid Ghorbani ◽  
Mahsan Tavakoli-Kakhki ◽  
Aleksei Tepljakov ◽  
Eduard Petlenkov ◽  
Arash Farnam ◽  
...  

1998 ◽  
Vol 64 (621) ◽  
pp. 1772-1779 ◽  
Author(s):  
Hideo FUJIMOTO ◽  
Akihito SANO ◽  
Masayuki TANAKA ◽  
Takashi HANAI

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
H. Saberi Najafi ◽  
A. Refahi Sheikhani ◽  
A. Ansari

We analyze the stability of three classes of distributed order fractional differential equations (DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust stability condition for these systems based on characteristic function and new inertia concept of a matrix with respect to the density function. Moreover, we check the stability of a distributed order fractional WINDMI system to illustrate the validity of proposed procedure.


Sign in / Sign up

Export Citation Format

Share Document