gyroscopic effects
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 38)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Ryspek Usubamatov ◽  
Marek Bergander

The opening up of space flights is going on with physical discoveries. One of them was a spinning object cyclic inversion revealed on the MIR space station classified in 1985. Later, the NASA International Space Station openly showed the same effect. This physical effect was an object of stare studying by physicists and mathematicians. They developed only approximated and numerical models on the level of assumptions. The inversion of the spinning objects in the condition of free flight is the subject of gyroscope theory. The mass of the spinning object at the orbital flight generates the system of the interrelated inertial torques that results from the action of the inertial torques produced by the curvilinear motion of the object around the earth. This system of the torques acting on the spinning object at an orbital flight manifests its cyclic inversions, which is the gyroscopic effects. The theory of the gyroscopic effects describes the method of application of the system of the inertial torques, the physics of all gyroscopic effects that manifested by any rotating objects under any condition of their motions.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6328
Author(s):  
Bo Hu ◽  
Yunzhe Li ◽  
Lairong Yin

The valve train is one of the main sources of engine vibration, and its dynamic performance is crucial for output power and fuel consumption. The flexibilities of slender bars and beams should be emphasised in the design of valve trains to develop high-power and high-speed engines with industrial applications. A flexible dynamic model of a valve train system is proposed. In the proposed model, the components, except the cam and gear bodies, are modelled as flexible bodies with multidirectional deformations. The gyroscopic effects of the camshaft, cams and gear discs are also considered to predict dynamic responses at high speeds accurately. Gear meshing, the friction of the cam–tappet pair, the centrifugal force of the cams and valve clearance are also considered. Experiments on housing vibration and pushrod stress are conducted to validate the proposed model. Results show that the proposed model can predict the dynamic stress of the flexible components well and predict the trend shown by the housing vibration. The proposed model shows that excessive cam rotation speed and valve clearance will cause intense bounce and jump phenomena. The proposed model can be an important reference for designing engine work speed, adjusting valve clearance and improving component durability.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fei Ren ◽  
Jinchen Ji ◽  
Guofu Luo ◽  
Shaofu Zhao ◽  
Liya Zhao ◽  
...  

In this study, based on the lumped-parameter theory and the Lagrange approach, a novel and generalized bending-torsional-axial coupled dynamic model for analyzing the load sharing behavior in the herringbone planetary gear train (HPGT) is presented by taking into account the actual structure of herringbone gears, manufacturing errors, time-dependent meshing stiffness, bearing deflections, and gyroscopic effects. The model can be applied to the analysis of the vibration of the HPGT with any number of planets and different types of manufacturing errors in different floating forms. The HPGT equivalent meshing error is analyzed and derived for the tooth profile errors and manufacturing eccentric errors of all components in the HPGT system. By employing the variable-step Runge–Kutta approach to calculate the system dynamic response, in conjunction with the presented calculation approach of the HPGT load sharing coefficient, the relationships among manufacturing errors, component floating, and load sharing are numerically obtained. The effects of the combined errors and single error on the load sharing are, respectively, discussed. Meanwhile, the effects of the support stiffness of the main components in the HPGT system on load sharing behavior are analyzed. The results indicate that manufacturing errors, floating components, and system support stiffness largely influence the load sharing behavior of the HPGT system. The research has a vital guiding significance for the design of the HPGT system.


Author(s):  
Ali Shahabi ◽  
Amir Hossein Kazemian ◽  
Said Farahat ◽  
Faramarz Sarhaddi

This study presents a new dynamic modeling of a vehicle by considering the engine dynamics. By selecting the vehicle coordinate system as the reference frame, all the force-torque equations of the sprung mass and unsprung masses are derived in this coordinate system by using the Newton’s equations of motion. Unlike the previous researches, in this work the sprung mass of the vehicle is not considered as a rigid body. The dynamics of the sprung mass components, such as gyroscopic effects of the engine crankshaft, is considered. In order to study the vehicle's dynamic behavior, in the J-turn maneuver, the governing equations of the full-car model are evaluated and validated by the numerical simulation method and ADAMS/Car software. Based on the results, the maximum roll angle and roll rate of a vehicle reach about 8 degrees and 40 degrees per second, respectively.


2021 ◽  
Author(s):  
Lei Tan ◽  
Tomoki Ikoma ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract The barge-type foundation with moonpool(s) is a promising type of platform for floating offshore wind turbines, since the moonpool(s) could improve the hydrodynamic performance at particular frequencies and reduce the costs of construction. In this paper, the horizontal mean drift force and yaw drift moment of a barge-type platform with four moonpools are numerically and experimentally investigated. Physical model tests are carried out in a wave tank, where a 2MW vertical-axis wind turbine is modelled in the 1:100 scale. By varying the rotating speed of the turbine and the mass of the blades, the gyroscopic effects due to turbine rotations on the mean drift forces are experimentally examined. The wave diffraction and radiation code WAMIT is used to carry out numerical analysis of wave drift force and moment. The experimental results indicate that the influence of the rotations of a vertical-axis wind turbine on the sway drift force is generally not very significant. The predictions by WAMIT are in reasonable agreement with the measured data. Numerical results demonstrate that the horizontal mean drift force and yaw drift moment at certain frequencies could be reduced by moonpool(s).


2021 ◽  
Author(s):  
Pong-In Pipatpaibul

Quadrotor unmanned aerial vehicles (UAVs) are recognized to be capable of various tasks including search and surveillance for their agilities and small sizes. This thesis proposes a simple and robust trajectory tracking controller for a quadrotor UAV utilizing online Iterative Learning Control (ILC) that is known to be effective for tasks performed repeatedly. Based on a nonlinear model which considers basic aerogynamic and gyroscopic effects, the quadrotor UAV model is simulated to perform a variety of maneuvering such as take-off, landing, smooth translation and horizontal and spatial circular trajectory motions, PD online ILCs wirh switching gain (SPD ILCs) are studies, tested and compared. Simulation results prove the ability of the online ILCs to successfully perform certain missions in the presence of considerably large disturbances and SPD ILCs can obtain faster convergence rates.


2021 ◽  
Author(s):  
Pong-In Pipatpaibul

Quadrotor unmanned aerial vehicles (UAVs) are recognized to be capable of various tasks including search and surveillance for their agilities and small sizes. This thesis proposes a simple and robust trajectory tracking controller for a quadrotor UAV utilizing online Iterative Learning Control (ILC) that is known to be effective for tasks performed repeatedly. Based on a nonlinear model which considers basic aerogynamic and gyroscopic effects, the quadrotor UAV model is simulated to perform a variety of maneuvering such as take-off, landing, smooth translation and horizontal and spatial circular trajectory motions, PD online ILCs wirh switching gain (SPD ILCs) are studies, tested and compared. Simulation results prove the ability of the online ILCs to successfully perform certain missions in the presence of considerably large disturbances and SPD ILCs can obtain faster convergence rates.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
R. Usubamatov ◽  
M. Bergander ◽  
S. Kapayeva

The dynamics of rotating objects is an area of classical mechanics that has many unsolved problems. Among these problems are the gyroscopic effects manifested by the spinning objects of different forms. One of them is the Tippe top designed as the truncated sphere which is fitted with a short, cylindrical rod for rotation. The unexplainable gyroscopic effect of the Tippe top is manifested by its inversion towards the support surface. Researchers tried to describe this gyroscopic effect for two centuries, but all modelings were on the level of assumptions. It is natural because the Tippe top has a more complex design than the simple spinning disc, which gyroscopic effects did not have an analytical solution until recent time. The latest research, in the area of gyroscopic effects, reveals the action of the system of several interrelated inertial torques on any spinning object. The gyroscopic inertial torques are generated by their rotating mass. These inertial torques and the variable ratio of the angular velocities of the spinning object around axes of rotations constitute the fundamental principles of gyroscope theory. These physical principles of dynamics of rotating objects enable to description and compute of any gyroscopic effects and also the Tippe top inversion.


2021 ◽  
Vol 136 (4) ◽  
Author(s):  
Alexey M. Bubenchikov ◽  
Mikhail A. Bubenchikov ◽  
Aleksandr V. Lun-Fu ◽  
Vyacheslav A. Ovchinnikov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document