A Design Method for Robust Stabilizing Modified Repetitive Controllers for Time-Delay Plants

2010 ◽  
Vol 36 ◽  
pp. 233-242 ◽  
Author(s):  
Yoshinori Ando ◽  
Kou Yamada ◽  
Nobuaki Nakazawa ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
...  

In this paper, we examine the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants. The modified repetitive control system is a type of servomechanism designed for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. The stability problem with uncertainty is known as the robust stability problem. Recently, the parameterization of all stabilizing modified repetitive controllers was obtained. Since the parameterization of all stabilizing modified repetitive controllers was obtained, we can express previous study of robust stabilizing modified repetitive controller in a uniform manner and can design a stabilizing modified repetitive controller systematically. However, the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants has not been obtained. In this paper, we clarify the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants.

Author(s):  
Zhongxiang Chen ◽  
Tatsuya Sakanushi ◽  
Kou Yamada ◽  
Yun Zhao ◽  
Satoshi Tohnai

The modified repetitive control system is a type of servomechanism for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. In some cases, uncertainties in the plant make the modified repetitive control system unstable, even though the controller was designed to stabilize the nominal plant. Recently, the parameterization of all robust stabilizing modified repetitive controllers was obtained by Yamada et al. In addition, Yamada et al. proposed the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants. However, no paper has proposed the parameterization of all robust stabilizing modified repetitive controllers for multiple-input/multiple-output time-delay plants. In this paper, we expand the result by Yamada et al. and propose the parameterization of all robust stabilizing modified repetitive controllers for multipleinput/multiple-output time-delay plants.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Dapeng Tian ◽  
Bao Zhang ◽  
Honghai Shen ◽  
Jiaquan Li

The wave variable has been proposed to achieve robust stability against the time delay in bilateral control system. However, the influence of the force source on the overall system is still not clear. This paper analyzes this problem and proposes a supplement to the stability analysis for wave variable based bilateral control. Based on the scattering theory, it is pointed out that the design of force source decides the passivity of the two-port network of slave robot. This passivity influences the stability of overall system. Based on the characteristic equation and small gain theorem, it is clear that inappropriate designed force source in encoding the wave variable destroys the stability in the presence of time delay. A wave domain filter makes up for the broken stability. The principle of this reparation is explained in this paper. A reference is also provided by the analysis to design the parameter of the wave domain filter. Experiments prove the correctness and validity.


Author(s):  
Yun Zhao ◽  
Kou Yamada ◽  
Tatsuya Sakanushi ◽  
Satoshi Tohnai

The modified repetitive control system is a type of servomechanism for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. In some cases, uncertainties in the plant make the control system unstable, even though the controller was designed to stabilize the nominal plant. Recently, Chen et al. propose the parameterization of all robust stabilizingmodified repetitive controllers for multipleinput/ multiple-output time-delay plants. However, using their method, it is complex to specify the lowpass filter in the internal model for the periodic reference input of which the role is to specify the inputoutput characteristic. Because, the low-pass filter is related to four free parameters in the parameterization. To specify the input-output characteristic easily, this paper proposes the parameterization of all robust stabilizing modified repetitive controllers for multiple-input/multiple-output time-delay plants with specified input-output characteristic such that the input-output characteristic can be specified beforehand.


2011 ◽  
Vol 121-126 ◽  
pp. 1982-1986
Author(s):  
Ping Wang ◽  
Liu Ye Chen ◽  
Chao Qun Wang

The paper proposes the design method of output filter and repetitive controller of inverter in stand-alone PV system. The design of filter considers the impact of filter on the inverter main circuit in order to increase the stability of the inverter. For the serious waveform distortion when the inverter runs independently with non-liner load, the circuit introduces repetitive control and presents a new parameter design method of repetitive controller. The simulation results prove that the design method is correct and feasible.


2014 ◽  
Vol 608-609 ◽  
pp. 19-22
Author(s):  
Ping Xu ◽  
Jian Gang Yi

Hydraulic descaling system is the key device to ensure the surface quality of billet. However, traditional control methods lead to the stability problem in hydraulic descaling system. To solve the problem, the construction of the hydraulic descaling computer control system is studied, the working principle of the system is analyzed, and the high pressure water bench of hydraulic descaling is designed. Based on it, the corresponding computer control software is developed. The application shows that the designed system is stable in practice, which is helpful for enterprise production.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650061 ◽  
Author(s):  
Zhen Shao ◽  
Zhengrong Xiang

This paper concerns the design of an observer-based repetitive control system (RCS) to improve the periodic disturbance rejection performance. The periodic disturbance is estimated by a repetitive learning based estimator (RLE) and rejected by incorporation of the estimation into a repetitive control (RC) input. Firstly, the configuration of the observer-based RCS with the RLE is described. Then, a continuous–discrete two-dimensional (2D) model is built to describe the RCS. By choosing an appropriate Lyapunov functional, a sufficient condition is proposed to guarantee the stability of the RCS. Finally, a numerical example is given to verify the effectiveness of the proposed method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hongqian Lu ◽  
Chaoqun Guo ◽  
Yue Hu ◽  
Wuneng Zhou ◽  
Shihao Yan

The stability problem of networked control system (NCS) with cyberattacks and processing delay is considered under an event-triggered scheme. An improved distributed event-triggered mechanism is proposed, which optimizes the performance of system dynamics and decreases the network transmission load simultaneously. By means of Bessel–Legendre inequality method and constructing an active Lyapunov–Krasovskii functional, a series of larger upper bounds of delay are obtained corresponding to the order of N. It is worth mentioning that the upper bound increases with N, which means that the conservatism of the stability criterion lowers. Finally, a distributed event-triggered controller is designed. The validity of the results is verified by numerical examples.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775178
Author(s):  
Wu-Sung Yao

In general, eccentric gravity machinery is a rotation mechanism with eccentric pendulum mechanism, which can be used to convert continuously kinetic energy generated by gravity energy to electric energy. However, a stable rotated velocity of the eccentric gravity machinery is difficult to be achieved only using gravity energy. In this article, a stable velocity control system applied to eccentric gravity machinery is proposed. The dynamic characteristic of eccentric gravity machinery is analyzed and its mathematical model is established, which is used to design the controller. A stable running velocity of the eccentric gravity machinery can be operated by the controlled servomotor. Due to disturbances being periodic, repetitive controller is installed to velocity control loop. The stability performance and control performance of the repetitive control system are discussed. The iterative algorithm of the repetitive control is executed by a digital signal processor TI TMS320C32 floating-point processor. Simulated and experimental results are reported to verify the performance of the proposed eccentric gravity machinery control system.


Sign in / Sign up

Export Citation Format

Share Document