scholarly journals Robust Adaptive Sliding Mode Control for Generalized Function Projective Synchronization of Different Chaotic Systems with Unknown Parameters

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Xiuchun Li ◽  
Jianhua Gu ◽  
Wei Xu

When the parameters of both drive and response systems are all unknown, an adaptive sliding mode controller, strongly robust to exotic perturbations, is designed for realizing generalized function projective synchronization. Sliding mode surface is given and the controlled system is asymptotically stable on this surface with the passage of time. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding controller is designed to ensure the occurrence of the sliding motion. Finally, numerical simulations are presented to verify the effectiveness and robustness of the proposed method even when both drive and response systems are perturbed with external disturbances.

Author(s):  
Fei Yu ◽  
Yun Song

The concept of complete switched generalized function projective synchronization (CSGFPS) in practical type is introduced and the CSGFPS of a class of hyperchaotic systems with unknown parameters and disturbance inputs are investigated. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of a class of hyperchaotic systems asymptotically synchronized up to a desired scaling function and the unknown parameters are also estimated. In numerical simulations, the scaling function factors discussed in this paper are more complicated. Finally, the hyperchaotic Lorenz and hyperchaotic Lü systems are taken, for example, and the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Gao ◽  
Chenghua Liang

A new four-dimensional hyperchaotic system is investigated. Numerical and analytical studies are carried out on its basic dynamical properties, such as equilibrium point, Lyapunov exponents, Poincaré maps, and chaotic dynamical behaviors. We verify the realizability of the new system via an electronic circuit by using Multisim software. Furthermore, a generalized function projective synchronization scheme of two different hyperchaotic systems with uncertain parameters is proposed, which includes some existing projective synchronization schemes, such as generalized projection synchronization and function projective synchronization. Based on the Lyapunov stability theory, a controller with parameters update laws is designed to realize synchronization. Using this controller, we realize the synchronization between Chen hyperchaotic system and the new system to verify the validity and feasibility of our method.


2011 ◽  
Vol 128-129 ◽  
pp. 1182-1185
Author(s):  
Min Xiu Yan ◽  
Li Ping Fan

This paper proposes the modified projective synchronization of uncertain chaotic systems with unknown parameters via active adaptive sliding mode control (AASMC). The disturbances are considered both in the drive and the response system. The bounds of the disturbances are unknown. The adaptive updating laws are designed to tackle the unknown parameters. Moreover, the robustness and stability of the proposed AASMC is proved by the Lyapunov stability theory. Some numerical simulations are given to demonstrate the robustness and efficiency of the proposed scheme.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zahra Rashidnejad Heydari ◽  
Paknosh Karimaghaee

AbstractThis paper introduces the projective synchronization of different fractional-order multiple chaotic systems with uncertainties, disturbances, unknown parameters, and input nonlinearities. A fractional adaptive sliding surface is suggested to guarantee that more slave systems synchronize with one master system. First, an adaptive sliding mode controller is proposed for the synchronization of fractional-order multiple chaotic systems with unknown parameters and disturbances. Then, the synchronization of fractional-order multiple chaotic systems in the presence of uncertainties and input nonlinearity is obtained. The developed method can be used for many of fractional-order multiple chaotic systems. The bounds of the uncertainties and disturbances are unknown. Suitable adaptive rules are established to overcome the unknown parameters. Based on the fractional Lyapunov theorem, the stability of the suggested technique is proved. Finally, the simulation results demonstrate the feasibility and robustness of our suggested scheme.


Sign in / Sign up

Export Citation Format

Share Document