scholarly journals Mobile Robot Path Planning Using Polyclonal-Based Artificial Immune Network

2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Lixia Deng ◽  
Xin Ma ◽  
Jason Gu ◽  
Yibin Li

Polyclonal based artificial immune network (PC-AIN) is utilized for mobile robot path planning. Artificial immune network (AIN) has been widely used in optimizing the navigation path with the strong searching ability and learning ability. However, artificial immune network exists as a problem of immature convergence which some or all individuals tend to the same extreme value in the solution space. Thus, polyclonal-based artificial immune network algorithm is proposed to solve the problem of immature convergence in complex unknown static environment. Immunity polyclonal algorithm (IPCA) increases the diversity of antibodies which tend to the same extreme value and finally selects the antibody with highest concentration. Meanwhile, immunity polyclonal algorithm effectively solves the problem of local minima caused by artificial potential field during the structure of parameter in artificial immune network. Extensive experiments show that the proposed method not only solves immature convergence problem of artificial immune network but also overcomes local minima problem of artificial potential field. So, mobile robot can avoid obstacles, escape traps, and reach the goal with optimum path and faster convergence speed.

Author(s):  
Waqar A. Malik ◽  
Jae-Yong Lee ◽  
Sooyong Lee

Mobile robots are increasingly being used to do tasks in unknown environment. The potential of robots to undertake such tasks lies on their ability to intelligently and efficiently locate and interact with objects in their environment. This paper describes a novel method to plan paths for mobile robots in a partially known environment observed by an overhead camera. The environment consists of dynamic obstacles and targets. A new methodology, Extrapolated Artificial Potential Field is proposed for real time robot path planning. The proposed Extrapolated Artificial Potential Field is capable of navigating robots situated among moving obstacles and target. An algorithm for probabilistic collision detection is introduced. The paper summarizes this approach, and discusses the results of path planning experiments using an Amigobot. The result shows that our method is effective.


Sign in / Sign up

Export Citation Format

Share Document