scholarly journals Performance Evaluation of DSC Windows for Buildings

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Gu Kang ◽  
Jin-Hee Kim ◽  
Jun-Tae Kim

Interest in BIPV systems with dye-sensitized solar cells (DSCs) that can replace building windows has increased for zero energy buildings. Although DSCs have lower efficiency in terms of electricity generation than silicon solar cells, they allow light transmission and application of various colors; they also have low production costs, which make them especially suitable for BIPV systems. DSC research is interdisciplinary, involving electrical, chemical, material, and metal engineering. A considerable amount of research has been conducted on increasing the electrical efficiency of DSC and their modules. However, there has not been sufficient research on building applications of DSC systems. The aim of this study is to evaluate the optical performance and thermal performance of DSC windows in buildings. For this study, DSC experimental models with different thicknesses and dye colors were manufactured, and their optical properties, such as transmittance and reflectivity, were measured by a spectrometer. The thermal and optical characteristics of double-glazed windows with DSC were analyzed with a window performance analysis program, WINDOW 6.0.

2010 ◽  
Vol 1270 ◽  
Author(s):  
Xu Wang ◽  
Haiyou Yin ◽  
Bao Wang ◽  
Lifeng Liu ◽  
Yi Wang ◽  
...  

AbstractA novel ZnO/TiO2 assorted photoelectrode for dye-sensitized solar cells (DSSCs) is proposed. The impacts of the ZnO/TiO2 assorted photoelectrode on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The measurements of the light transmission spectra showed the higher transmittance through ZnO/FTO than through FTO during the effective wavelength region of 536nm˜800nm for DSSCs, indicating that ZnO/TiO2 assorted photoelectrode is beneficial for the photovoltaic performance of DSSCs. The measurements on the photovoltaic characteristics of the DSSC cell indicate that the inserted ZnO layer can cause the increased open circuit voltage (Voc) more than 70 mV and fill factor (FF) but the decreased short circuit current. The enhanced Voc and FF could be attributed to the suppressed the recombination of photon-generated carriers between the ZnO/TiO2 assorted photoelectrode and electrolyte (dye) compared to TiO2 photoelectrode. However, the additional series resistance of inserted ZnO layer causes the reduced short circuit current. The optimized conversion efficiency can be achieved in the DSSC with ZnO/TiO2 assorted photoelectrode by using low series resistance of ZnO layer.


Author(s):  
Sagil James ◽  
Karan Parikh

Abstract Dye-Sensitized solar cells (DSSC) are considered to be the replacement for traditional silicon solar cells. DSSCs have been noticed widely due to its simplified material handling, easy fabrication, durability and their ability to perform better under diverse lighting conditions. However, there are significant challenges that are faced by DSSCs such as lower efficiency, chemical instability, and leakage of the electrolyte under high-temperature conditions. The fabrication of counter electrodes for DSSCs require the use of expensive materials and techniques which increases the cost as well as limits mass production. These limitations can be addressed through a cost-effective fabrication process for counter electrodes of DSSCs. This research focuses on enhancing the conductivity and catalytic activity of the counter electrodes of DSSCs through a novel selective electroless plating technique. The proposed selective electroless plating technique helps to overcome the issues of high cost, toxicity, and complex manufacturing processing of conventional DSSC. Moreover, the fabrication of the DSSC is supplemented using additive manufacturing technology. The technique further helps to enhance the performance, provide excellent design flexibility while reducing the manufacturing cost. The results of the study show selective electroless plating is an effective technique for the fabrication of low-cost counter electrodes for DSSCs. The efficiencies of the DSSC are comparable with DSSC fabricated through conventional expensive and toxic materials.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3741
Author(s):  
Fabian Schoden ◽  
Marius Dotter ◽  
Dörthe Knefelkamp ◽  
Tomasz Blachowicz ◽  
Eva Schwenzfeier-Hellkamp

In times of climate change and dwindling fossil resources, the need for sustainable renewable energy technologies gains importance, increasingly fast. However, the state of the art technologies are energy intensive in their production, like monocrystalline photovoltaic, or even consist of not recyclable composite material, in the case of wind turbine blades. Despite a lack in efficiency and stability, dye sensitized solar cells (DSSC) have a high potential to supplement the state of the art green energy technology in future. With low production costs and no necessity for toxic compounds DSSCs are a potential product, which could circulate in the loops of a circular economy. Therefore, with this paper, we provide the status of research on DSSC recycling and an outlook on how recycling streams could be realized in the future for glass-based DSSCs without toxic components. The overview includes work on using recycled material to build DSSCs and extending the life of a DSSC, e.g., through rehydration. We also illustrate the state of sustainability research for DSSCs using the VOSviewer tool. To date, the term sustainability appears in 35 of 24,441 publications on DSSCs. In view of the global challenges, sustainability should be researched more seriously because it is as important as the efficiency and stability of DSSCs.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Christyowati Primi Sagita

Natural dyes have gained much attentions as the cheap photosensitizer for dye-sensitized solar cells because of their abundant availability in nature. One of potential natural dyes is betalain dye. Betalain dye mostly can be found in family plant of Caryophyllales. This dye has carboxyl groups and can absorb light until wavelength of 600 nm since betalain dye can be in red-purple color. However, betalain dye is still reported to give a lower efficiency in dye-sensitized solar cells device because of its nature properties as compared to the synthetic dyes. This encourages many researchers to investigate the method for developing betalain ability in purpose to enhance the cell device efficiency. To date, there are two methods having been reported for their positive results in increasing the efficiency of cell device based on betalain dye, i.e., combining the betalain dye with other natural dyes, and selecting the suitable solvent and pH in betalain dye extraction. Therefore, in this review, the summary about potential of betalain dye as photosensitizer and what properties of this dye have as the photosensitizer would be described. The summary of methods for optimizing betalain dye in improving the conversion efficiency of dye-sensitized solar cell also will be presented for better understanding the potential of this dye.


2010 ◽  
Vol 130 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Shoji Furukawa ◽  
Hiroshi Iino ◽  
Koudai Kukita ◽  
Kaoru Kaminosono

Sign in / Sign up

Export Citation Format

Share Document