scholarly journals Average Conditions for the Permanence of a Bounded Discrete Predator-Prey System

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Yong-Hong Fan ◽  
Lin-Lin Wang

Average conditions are obtained for the permanence of a discrete bounded system with Holling type II functional responseu(n+1)=u(n)exp{a(n)-b(n)u(n)-c(n)v(n)/(u(n)+m(n)v(n))},v(n+1)=v(n)exp{-d(n)+e(n)u(n)/(u(n)+m(n)v(n))}.The method involves the application of estimates of uniform upper and lower bounds of solutions. When these results are applied to some special delay population models with multiple delays, some new results are obtained and some known results are generalized.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Wanlin Chen ◽  
Yuhua Lin

A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response is studied in this paper. A set of sufficient conditions which guarantee the persistence and global stability of the system are obtained, respectively. Our results show that if refuge is large enough then predator species will be driven to extinction due to the lack of enough food. Two examples together with their numerical simulations show the feasibility of the main results.


2009 ◽  
Vol 02 (02) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN JIA ◽  
HUI CAO

In this paper, we introduce and study Holling type II functional response predator–prey system with digest delay and impulsive harvesting on the prey, which contains with periodically pulsed on the prey and time delay on the predator. We investigate the existence and global attractivity of the predator-extinction periodic solutions of the system. By using the theory on delay functional and impulsive differential equation, we obtain the sufficient condition with time delay and impulsive perturbations for the permanence of the system.


2011 ◽  
Vol 16 (2) ◽  
pp. 242-253 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

In this paper, a predator-prey system with Holling type II functional response and stage structure is investigated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is studied. The existence of the orbitally asymptotically stable periodic solution is established. By using suitable Lyapunov functions and the LaSalle invariance principle, it is proven that the predator-extinction equilibrium is globally asymptotically stable when the coexistence equilibrium is not feasible, and sufficient conditions are derived for the global stability of the coexistence equilibrium.


Sign in / Sign up

Export Citation Format

Share Document