scholarly journals Exponential Synchronization for Neutral Complex Dynamical Networks with Interval Mode-Dependent Delays and Sampled Data

2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Xinghua Liu ◽  
Hongsheng Xi

The exponential synchronization and sampled-data controller problem for a class of neutral complex dynamical networks (NCDNs) with Markovian jump parameters, partially unknown transition rates and delays, is investigated in this paper. Both the discrete and neutral delays are considered to be interval mode dependent and time varying, while the sampling period is assumed to be time varying and bounded. Based on a new augmented stochastic Lyapunov functional, the delay-range-dependent and rate-dependent exponential stability conditions for the closed-loop error system are obtained by the Lyapunov-Krasovskii stability theory and reciprocally convex lemma. Then according to the proposed exponential stability conditions, the sampled-data synchronization controllers are designed in terms of the solution to linear matrix inequalities that can be solved effectively by using Matlab. Finally, numerical examples are given to demonstrate the feasibility and effectiveness of the proposed methods.

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Jian-An Wang ◽  
Xin-Yu Wen

This paper is concerned with the problem of sampled-data synchronization for complex dynamical networks (CDNs) with time-varying coupling delay and random coupling strengths. The random coupling strengths are described by normal distribution. The sampling period considered here is assumed to be less than a given bound. By taking the characteristic of sampled-data system into account, a discontinuous Lyapunov functional is constructed, and a delay-dependent mean square synchronization criterion is derived. Based on the proposed condition, a set of desired sampled-data controllers are designed in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI Toolbox. Numerical examples are given to demonstrate the effectiveness of the proposed scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hea-Min Lee ◽  
Wookyong Kwon ◽  
Sangmoon Lee ◽  
Dongyeop Kang

This paper deals with the sampled-data synchronization problem for complex dynamical networks (CDNs) with time-varying coupling delay. To get improved results, two-sided free-weighting stabilization method is utilized with a novel looped functional taking the information of the present sampled states and next sampled states, which can more precisely account for the sawtooth shape of the sampling delay. Also, the quadratic generalized free-weighting matrix inequality (QGFWMI), which provides additional degree of freedom (DoF), is utilized to calculate the upper limit of the integral term. Based on the novel looped functional and QGFWMI, improved conditions of stability are derived from forms of linear matrix inequalities (LMIs). The numerical examples show the validity and effectiveness.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Liu ◽  
Jiahui Bai ◽  
Yue Zhao ◽  
Chao Liu ◽  
Xuemin Yan ◽  
...  

This paper studies the adaptive group synchronization of second-order nonlinear complex dynamical networks with sampled-data and time-varying delays by designing a new adaptive strategy to feedback gains and coupling strengths. According to Lyapunov stability properties, it is shown that the agents of subgroups can converge the given synchronous states, respectively, under some conditions on the sampled period. Moreover, some simulation results are given.


Sign in / Sign up

Export Citation Format

Share Document