scholarly journals On Cayley Digraphs That Do Not Have Hamiltonian Paths

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dave Witte Morris

We construct an infinite family {Cay→(Gi;ai;bi)} of connected, 2-generated Cayley digraphs that do not have hamiltonian paths, such that the orders of the generators ai and bi are unbounded. We also prove that if G is any finite group with |[G,G]|≤3, then every connected Cayley digraph on G has a hamiltonian path (but the conclusion does not always hold when |[G,G]|=4 or 5).

2019 ◽  
Vol 22 (5) ◽  
pp. 953-974
Author(s):  
Ángel del Río ◽  
Mariano Serrano

Abstract H. J. Zassenhaus conjectured that any unit of finite order and augmentation 1 in the integral group ring {\mathbb{Z}G} of a finite group G is conjugate in the rational group algebra {\mathbb{Q}G} to an element of G. We prove the Zassenhaus conjecture for the groups {\mathrm{SL}(2,p)} and {\mathrm{SL}(2,p^{2})} with p a prime number. This is the first infinite family of non-solvable groups for which the Zassenhaus conjecture has been proved. We also prove that if {G=\mathrm{SL}(2,p^{f})} , with f arbitrary and u is a torsion unit of {\mathbb{Z}G} with augmentation 1 and order coprime with p, then u is conjugate in {\mathbb{Q}G} to an element of G. By known results, this reduces the proof of the Zassenhaus conjecture for these groups to proving that every unit of {\mathbb{Z}G} of order a multiple of p and augmentation 1 has order actually equal to p.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450034 ◽  
Author(s):  
Toru Ikeda

We consider symmetries of spatial graphs in compact 3-manifolds described by smooth finite group actions. This paper provides a method for constructing an infinite family of hyperbolic spatial graphs with given symmetry by connecting spatial graph versions of hyperbolic tangles in 3-cells of polyhedral cell decompositions induced from triangulations of the 3-manifolds. This method is applicable also to the case of ideal triangulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. Sohel Rahman ◽  
M. Kaykobad ◽  
Jesun Sahariar Firoz

A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Fatemeh Keshavarz-Kohjerdi ◽  
Alireza Bagheri

The Hamiltonian path problem for general grid graphs is known to be NP-complete. In this paper, we give necessary and sufficient conditions for the existence of Hamiltonian paths inL-alphabet,C-alphabet,F-alphabet, andE-alphabet grid graphs. We also present linear-time algorithms for finding Hamiltonian paths in these graphs.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 916
Author(s):  
Armando Maya-López ◽  
Fran Casino ◽  
Agusti Solanas

The collection of personal data is exponentially growing and, as a result, individual privacy is endangered accordingly. With the aim to lessen privacy risks whilst maintaining high degrees of data utility, a variety of techniques have been proposed, being microaggregation a very popular one. Microaggregation is a family of perturbation methods, in which its principle is to aggregate personal data records (i.e., microdata) in groups so as to preserve privacy through k-anonymity. The multivariate microaggregation problem is known to be NP-Hard; however, its univariate version could be optimally solved in polynomial time using the Hansen-Mukherjee (HM) algorithm. In this article, we propose a heuristic solution to the multivariate microaggregation problem inspired by the Traveling Salesman Problem (TSP) and the optimal univariate microaggregation solution. Given a multivariate dataset, first, we apply a TSP-tour construction heuristic to generate a Hamiltonian path through all dataset records. Next, we use the order provided by this Hamiltonian path (i.e., a given permutation of the records) as input to the Hansen-Mukherjee algorithm, virtually transforming it into a multivariate microaggregation solver we call Multivariate Hansen-Mukherjee (MHM). Our intuition is that good solutions to the TSP would yield Hamiltonian paths allowing the Hansen-Mukherjee algorithm to find good solutions to the multivariate microaggregation problem. We have tested our method with well-known benchmark datasets. Moreover, with the aim to show the usefulness of our approach to protecting location privacy, we have tested our solution with real-life trajectories datasets, too. We have compared the results of our algorithm with those of the best performing solutions, and we show that our proposal reduces the information loss resulting from the microaggregation. Overall, results suggest that transforming the multivariate microaggregation problem into its univariate counterpart by ordering microdata records with a proper Hamiltonian path and applying an optimal univariate solution leads to a reduction of the perturbation error whilst keeping the same privacy guarantees.


2019 ◽  
Vol 18 (07) ◽  
pp. 1950121
Author(s):  
Reza Sabzchi ◽  
Hossein Abdolzadeh

In this paper, for any integer [Formula: see text] we introduce a non-metacyclic finite group of order [Formula: see text] and nilpotency class [Formula: see text] with zero deficiency.


2009 ◽  
Vol 3 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Letícia Bueno ◽  
Luerbio Faria ◽  
Figueiredo De ◽  
Fonseca Da

Lov?sz conjectured that every connected vertex-transitive graph has a Hamiltonian path. The odd graphs Ok form a well-studied family of connected, k-regular, vertex-transitive graphs. It was previously known that Ok has Hamiltonian paths for k ? 14. A direct computation of Hamiltonian paths in Ok is not feasible for large values of k, because Ok has (2k - 1, k - 1) vertices and k/2 (2k - 1, k - 1) edges. We show that Ok has Hamiltonian paths for 15 ? k ? 18. Instead of directly running any heuristics, we use existing results on the middle levels problem, therefore further relating these two fundamental problems, namely finding a Hamiltonian path in the odd graph and finding a Hamiltonian cycle in the corresponding middle levels graph. We show that further improved results for the middle levels problem can be used to find Hamiltonian paths in Ok for larger values of k.


2014 ◽  
Vol 90 (3) ◽  
pp. 404-417 ◽  
Author(s):  
MAURICE CHIODO

AbstractIn 1976, Wiegold asked if every finitely generated perfect group has weight 1. We introduce a new property of groups, finitely annihilated, and show that this might be a possible approach to resolving Wiegold’s problem. For finitely generated groups, we show that in several classes (finite, solvable, free), being finitely annihilated is equivalent to having noncyclic abelianisation. However, we also construct an infinite family of (finitely presented) finitely annihilated groups with cyclic abelianisation. We apply our work to show that the weight of a nonperfect finite group, or a nonperfect finitely generated solvable group, is the same as the weight of its abelianisation. This recovers the known partial results on the Wiegold problem: a finite (or finitely generated solvable) perfect group has weight 1.


2006 ◽  
Vol 07 (02) ◽  
pp. 235-255 ◽  
Author(s):  
CHAO-MING SUN ◽  
CHENG-KUAN LIN ◽  
HUA-MIN HUANG ◽  
LIH-HSING HSU

Two hamiltonian paths P1 = 〈v1, v2, …, vn(G) 〉 and P2 = 〈 u1, u2, …, un(G) 〉 of G are independent if v1 = u1, vn(G) = un(G), and vi ≠ ui for 1 < i < n(G). A set of hamiltonian paths {P1, P2, …, Pk} of G are mutually independent if any two different hamiltonian paths in the set are independent. A bipartite graph G is hamiltonian laceable if there exists a hamiltonian path joining any two nodes from different partite sets. A bipartite graph is k-mutually independent hamiltonian laceable if there exist k-mutually independent hamiltonian paths between any two nodes from different partite sets. The mutually independent hamiltonian laceability of bipartite graph G, IHPL(G), is the maximum integer k such that G is k-mutually independent hamiltonian laceable. Let Qn be the n-dimensional hypercube. We prove that IHPL(Qn) = 1 if n ∈ {1,2,3}, and IHPL(Qn) = n - 1 if n ≥ 4. A hamiltonian cycle C of G is described as 〈 u1, u2, …, un(G), u1 〉 to emphasize the order of nodes in C. Thus, u1 is the beginning node and ui is the i-th node in C. Two hamiltonian cycles of G beginning at u, C1 = 〈 v1, v2, …, vn(G), v1 〉 and C2 = 〈 u1, u2, …, un(G), u1 〉, are independent if u = v1 = u1, and vi ≠ ui for 1 < i ≤ n(G). A set of hamiltonian cycles {C1, C2, …, Ck} of G are mutually independent if any two different hamiltonian cycles are independent. The mutually independent hamiltonianicity of graph G, IHC(G), is the maximum integer k such that for any node u of G there exist k-mutually independent hamiltonian cycles of G starting at u. We prove that IHC(Qn) = n - 1 if n ∈ {1,2,3} and IHC(Qn) = n if n ≥ 4.


10.37236/316 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Stefano Capparelli ◽  
Alberto Del Fra

Marco Buratti has conjectured that, given an odd prime $p$ and a multiset $L$ containing $p-1$ integers taken from $\{1,\ldots,(p-1)/2\}$, there exists a Hamiltonian path in the complete graph with $p$ vertices whose multiset of edge-lengths is equal to $L$ modulo $p$. We give a positive answer to this conjecture in the case of multisets of the type $\{1^a,2^b,3^c\}$ by completely classifying such multisets that are linearly or cyclically realizable.


Sign in / Sign up

Export Citation Format

Share Document