scholarly journals Analytic Solutions of an Iterative Functional Differential Equations Near Regular Points

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Lingxia Liu

The existence of analytic solutions of an iterative functional differential equation is studied when the given functions are all analytic and when the given functions have regular points. By reducing the equation to another functional equation without iteration of the unknown function an existence theorem is established for analytic solutions of the original equation.

2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Tongbo Liu ◽  
Hong Li

We investigate the existence of analytic solutions of a class of second-order differential equations involving iterates of the unknown function in the complex field . By reducing the equation with the Schröder transformation to the another functional differential equation without iteration of the unknown function + = , we get its local invertible analytic solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jun Zhou ◽  
Jun Shen

<p style='text-indent:20px;'>In this paper we consider the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions for the general iterative functional differential equation <inline-formula><tex-math id="M1">\begin{document}$ \dot{x}(t) = f(t,x(t),x^{[2]}(t),...,x^{[n]}(t)). $\end{document}</tex-math></inline-formula> As <inline-formula><tex-math id="M2">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula>, this equation can be regarded as a mixed-type functional differential equation with state-dependence <inline-formula><tex-math id="M3">\begin{document}$ \dot{x}(t) = f(t,x(t),x(T(t,x(t)))) $\end{document}</tex-math></inline-formula> of a special form but, being a nonlinear operator, <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula>-th order iteration makes more difficulties in estimation than usual state-dependence. Then we apply our results to the existence, uniqueness, boundedness, asymptotics and continuous dependence of solutions for the mixed-type functional differential equation. Finally, we present two concrete examples to show the boundedness and asymptotics of solutions to these two types of equations respectively.</p>


Author(s):  
F. Kappel ◽  
W. Schappacher

SynopsisThe equivalence between solutions of functional differential equations and an abstract integral equation is investigated. Using this result we derive a general approximation result in the state space C and consider as an example approximation by first order spline functions. During the last twenty years C1-semigroups of linear transformations have played an important role in the theory of linear autonomous functional differential equations (cf. for instance the discussion in [9, Section 7.7]). Applications of non-linear semigroup theory to functional differential equations are rather recent beginning with a paper by Webb [17]. Since then a considerable number of papers deal with problems in this direction. A common feature of the majority of these papers is that as a first step with the functional differential equation there is associated a non-linear operator A in a suitable Banach-space. Then appropriate conditions are imposed on the problem such that the conditions of the Crandall-Liggett-Theorem [5] hold for the operator A. This gives a non-linear semigroup. Finally the connection of this semigroup tothe solutions of the original differential equation has to be investigated [c.f. 8, 15, 18]. To solve thislast problem in general is the most difficult part of this approach.In the present paper we consider the given functional differential equation as a perturbation of the simple equationx = 0. The solutions of this equation generate a very simple C1-semigroup. The solutions of the original functional differential equation generate solutions of an integral equation which is the variation of constants formula for the abstract Cauchy problem associated with the equation x = 0. Under very mild conditions we can prove a one-to-one correspondence between solutions of the given functional differential equation and solutions of the integral equation in the Lp-space setting. In the C-space setting the integral equation inthe state space has to be replaced by a ‘pointwise’ integral equation. Using the pointwise integral equation together with a theorem which guarantees continuous dependence of fixed points on parameters we show under rather weak hypotheses that the original functional differential equation can be approximated by a sequence of ordinary differential equations. Using 1st order spline functions we finally get results which are very similar to those obtained in [1 and 11] in the L2-space setting.


Author(s):  
Marco Spadini

AbstractWe study the existence of a connected “branch” of periodic solutions of T-periodic perturbations of a particular class of functional differential equations on differentiable manifolds. Our result is obtained by a combination of degree-theoretic methods and a technique that allows to associate the bounded solutions of the functional equation to bounded solutions of a suitable ordinary differential equation.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Houyu Zhao

By Faà di Bruno’s formula, using the fixed-point theorems of Schauder and Banach, we study the existence and uniqueness of smooth solutions of an iterative functional differential equationx′(t)=1/(c0x[0](t)+c1x[1](t)+⋯+cmx[m](t)).


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


Sign in / Sign up

Export Citation Format

Share Document