scholarly journals Developing a Series Solution Method of -Difference Equations

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Hsuan-Ku Liu

The series solution is widely applied to differential equations on but is not found in -differential equations. Applying the Taylor and multiplication rule of two generalized polynomials, we develop a series solution of linear homogeneous -difference equations. As an example, the series solution method is used to find a series solution of the second-order -difference equation of Hermite’s type.

Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Author(s):  
J. D. Love

AbstractWhen the first two elements of a sequence satisfying a second order difference equation are prescribed, the remaining elements are evaluated from a continued fraction and a simple product.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Guowei Zhang

We estimate the growth of the meromorphic solutions of some complex -difference equations and investigate the convergence exponents of fixed points and zeros of the transcendental solutions of the second order -difference equation. We also obtain a theorem about the -difference equation mixing with difference.


2019 ◽  
pp. 76-80
Author(s):  
M.I. Ayzatsky

The transformation of the N-th-order linear difference equation into a system of the first order difference equations is presented. The proposed transformation opens possibility to obtain new forms of the N-dimensional system of the first order equations that can be useful for the analysis of solutions of the N-th-order difference equations. In particular for the third-order linear difference equation the nonlinear second-order difference equation that plays the same role as the Riccati equation for second-order linear difference equation is obtained. The new form of the Ndimensional system of first order equations can also be used to find the WKB solutions of the linear difference equation with coefficients that vary slowly with index.


2020 ◽  
Vol 70 (2) ◽  
pp. 417-430
Author(s):  
Robert Stegliński ◽  
Magdalena Nockowska-Rosiak

Abstract We study the existence of infinitely many positive homoclinic solutions to a second-order difference equation on integers with pk-Laplacian. To achieve our goal we use the critical point theory and the general variational principle of Ricceri.


2018 ◽  
Vol 22 ◽  
pp. 01050
Author(s):  
Münevver Tuz

In this study, we investigated the global asymptotic behaviors of their solutions by taking the second-order difference equation system. According to the given conditions, we obtained some asymptotic results for the positive balance of the system. We have also worked on q-fast changing functions. Such functions form the class of q-Caramate functions. We have applied q-Caramate functions to linear q-difference equations and We have also learned about the asymptotic behavior of solutions. In addition, we have studied the problem of initial and boundary value for the q-difference equation


2003 ◽  
Vol 34 (2) ◽  
pp. 137-146 ◽  
Author(s):  
E. Thandapani ◽  
K. Mahalingam

Consider the second order difference equation of the form$\Delta^2(y\n-py_{n-1-k})+q_nf(y_{n-\ell})=0,\quad n=1,2,3,\ldots  \hskip 1.9cm\hbox{(E)}$where $ \{q_n\}$ is a nonnegative real sequence, $ f:{\Bbb R}\rightarrow {\Bbb R}$ is continuous such that $ uf(u)>0$ for $ u\not= 0$, $ 0\le p


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Stevo Stević ◽  
Bratislav Iričanin ◽  
Witold Kosmala ◽  
Zdeněk Šmarda

Abstract It is known that every solution to the second-order difference equation $x_{n}=x_{n-1}+x_{n-2}=0$ x n = x n − 1 + x n − 2 = 0 , $n\ge 2$ n ≥ 2 , can be written in the following form $x_{n}=x_{0}f_{n-1}+x_{1}f_{n}$ x n = x 0 f n − 1 + x 1 f n , where $f_{n}$ f n is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


Sign in / Sign up

Export Citation Format

Share Document