scholarly journals Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
E. Castillo ◽  
D. P. Morales ◽  
A. García ◽  
F. Martínez-Martí ◽  
L. Parrilla ◽  
...  

This paper illustrates the application of the discrete wavelet transform (DWT) for wandering and noise suppression in electrocardiographic (ECG) signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

Author(s):  
CHUANG-CHIEN CHIU ◽  
CHOU-MIN CHUANG ◽  
CHIH-YU HSU

The main purpose of this study is to present a novel personal authentication approach with the electrocardiogram (ECG) signal. The electrocardiogram is a recording of the electrical activity of the heart and the recorded signals can be used for individual verification because ECG signals of one person are never the same as those of others. The discrete wavelet transform was applied for extracting features that are the wavelet coefficients derived from digitized signals sampled from one-lead ECG signal. By the proposed approach applied on 35 normal subjects and 10 arrhythmia patients, the verification rate was 100% for normal subjects and 81% for arrhythmia patients. Furthermore, the performance of the ECG verification system was evaluated by the false acceptance rate (FAR) and false rejection rate (FRR). The FAR was 0.83% and FRR was 0.86% for a database containing only 35 normal subjects. When 10 arrhythmia patients were added into the database, FAR was 12.50% and FRR was 5.11%. The experimental results demonstrated that the proposed approach worked well for normal subjects. For this reason, it can be concluded that ECG used as a biometric measure for personal identity verification is feasible.


Author(s):  
Zhong Zhang ◽  
Jin Ohtaki ◽  
Hiroshi Toda ◽  
Takashi Imamura ◽  
Tetsuo Miyake

In this study, in order to verify the effectiveness of the variable filter band discrete wavelet transform (VFB-DWT) and construction method of the variable-band filter (VBF), a fetal ECG extraction has been carried out and the main results obtained are as follows. The approach to configuration VBF by selecting the frequency band only where the fetal ECG component is present was effective to configure the optimal base sensible signal. The extraction of the fetal ECG was successful by applying the wavelet shrinkage to VFB-DWT, which used the constructed VBF. The information entropy was selected as an evaluation index, and two kinds of ECG signals are used to evaluate the wavelet transform basis between the wavelet packet transform (WPT) and the VFB-DWT. One is a synthesized signal composed of white noise, the maternal ECG and the fetal ECG. The other signal is the real target signal separated by independent component analysis (ICA) and has the mother's body noise, the maternal ECG and the fetal ECG. The result shows that the basis by VBF of the VFB-DWT is better than the basis of the WPT that was chosen by the best basis algorithm (BBA).


Author(s):  
Yi-Ting Chen ◽  
Edward W. Sun ◽  
Min-Teh Yu

AbstractIntelligent pattern recognition imposes new challenges in high-frequency financial data mining due to its irregularities and roughness. Based on the wavelet transform for decomposing systematic patterns and noise, in this paper we propose a new integrated wavelet denoising method, named smoothness-oriented wavelet denoising algorithm (SOWDA), that optimally determines the wavelet function, maximal level of decomposition, and the threshold rule by using a smoothness score function that simultaneously detects the global and local extrema. We discuss the properties of our method and propose a new evaluation procedure to show its robustness. In addition, we apply this method both in simulation and empirical investigation. Both the simulation results based on three typical stylized features of financial data and the empirical results in analyzing high-frequency financial data from Frankfurt Stock Exchange confirm that SOWDA significantly (based on the RMSE comparison) improves the performance of classical econometric models after denoising the data with the discrete wavelet transform (DWT) and maximal overlap discrete wavelet transform (MODWT) methods.


Sign in / Sign up

Export Citation Format

Share Document