scholarly journals Exact Solutions of the Mass-Dependent Klein-Gordon Equation with the Vector Quark-Antiquark Interaction and Harmonic Oscillator Potential

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
M. K. Bahar ◽  
F. Yasuk

Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.

2008 ◽  
Vol 23 (35) ◽  
pp. 3005-3013 ◽  
Author(s):  
A. REZAEI AKBARIEH ◽  
H. MOTAVALI

The exact solutions of the one-dimensional Klein–Gordon equation for the Rosen–Morse type potential with equal scalar and vector potentials are presented. First, we briefly review Nikiforov–Uvarov mathematical method. Using this method, wave functions and corresponding exact energy equation are obtained for the s-wave bound state. It has been shown that the results for Rosen–Morse type potentials reduce to the standard Rosen–Morse well and Eckart potentials in the special case. The PT-symmetry for these potentials is also considered.


2011 ◽  
Vol 26 (35) ◽  
pp. 2639-2651 ◽  
Author(s):  
S. HAOUAT ◽  
R. CHEKIREB

The problem of particle creation from vacuum in a flat Robertson–Walker spacetime is studied. Two sets of exact solutions for the Klein–Gordon equation are given when the scale factor is a2(η) = a+b tanh(λη)+c tanh2 (λη). Then the canonical method based on Bogoliubov transformation is applied to calculate the pair creation probability and the density number of created particles. Some particular cosmological models such as radiation dominated universe and Milne universe are discussed. For both cases the vacuum to vacuum transition probability is calculated and the imaginary part of the effective action is extracted.


Sign in / Sign up

Export Citation Format

Share Document