supersymmetric approach
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
C. A Onate ◽  
G. O Egharevba ◽  
D. T Bankole

The solutions for Morse potential energy function under the influence of Schr¨odinger equation are examined using supersymmetric approach. The energy equation obtained was used to generate eigenvalues forX1 +state of scandium monoiodide (ScI) and X3 state of nitrogen monoiodide (NI) respectively were obtained by imputing their respective spectroscopic parameters. The calculated results for the two molecules aligned excellently with the predicted/observed values. 


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
K. Eder ◽  
H. Sahlmann

Abstract In this paper, we study a class of symmetry reduced models of $$ \mathcal{N} $$ N = 1 super- gravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by D’Eath et al. We show that the essential part of the constraint algebra in the classical theory closes. In particular, the (graded) Poisson bracket between the left and right supersymmetry constraint reproduces the Hamiltonian constraint.For the quantum theory, we apply techniques from the manifestly supersymmetric approach to loop quantum supergravity, which yields a graded analog of the holonomy-flux algebra and a natural state space.We implement the remaining constraints in the quantum theory. For a certain subclass of these models, we show explicitly that the (graded) commutator of the supersymmetry constraints exactly reproduces the classical Poisson relations. In particular, the trace of the commutator of left and right supersymmetry constraints reproduces the Hamilton constraint operator. Finally, we consider the dynamics of the theory and compare it to a quantization using standard variables and standard minisuperspace techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. Onate ◽  
M. C. Onyeaju ◽  
E. Omugbe ◽  
I. B. Okon ◽  
O. E. Osafile

AbstractAn approximate solutions of the radial Schrödinger equation was obtained under a modified Tietz–Hua potential via supersymmetric approach. The effect of the modified parameter and optimization parameter respectively on energy eigenvalues were graphically and numerically examined. The comparison of the energy eigenvalues of modified Tietz–Hua potential and the actual Tietz–Hua potential were examined. The ro-vibrational energy of four molecules were also presented numerically. The thermal properties of the modified Tietz–Hua potential were calculated and the effect of temperature on each of the thermal property were examined under hydrogen fluoride, hydrogen molecule and carbon (ii) oxide. The study reveals that for a very small value of the modified parameter, the energy eigenvalues of the modified Tietz–Hua potential and that of the actual Tietz–Hua potential are equivalent. Finally, the vibrational energies for Cesium molecule was calculated and compared with the observed value. The calculated results were found to be in good agreement with the observed value.


2020 ◽  
Vol 39 (1) ◽  
pp. 63-71
Author(s):  
Ujjwal Laha ◽  
Ashwini Kumar Behera ◽  
Jhasaketan Bhoi

Sign in / Sign up

Export Citation Format

Share Document