scholarly journals Finite Element Analysis for Brittle and Ductile Fracture Using a Unified Cohesive Zone Model

2013 ◽  
Vol 5 ◽  
pp. 924070 ◽  
Author(s):  
Jinxiang Liu ◽  
Jun Li ◽  
Litao Liu
Author(s):  
Shengjia Wu ◽  
Shin-Jang Sung ◽  
Jwo Pan ◽  
Poh-Sang Lam ◽  
Douglas A. Scarth

The crack extension in a compact tension specimen of hydrided irradiated Zr-2.5Nb material is investigated by a two-dimensional plane stress finite element analysis. The stress-strain relation of the Zr-2.5Nb material for the finite element analysis is obtained from fitting the experimental tensile stress-strain curve of the irradiated Zr-2.5Nb material without hydrides by a three-dimensional finite element analysis. The calibration of the cohesive zone model with a trapezoidal traction-separation law is based on fitting the load-displacement-crack extension experimental data of a compact tension specimen of hydrided irradiated Zr-2.5Nb material. The general trends of the load-displacement, crack extension-displacement, and load-crack extension curves obtained from the finite element analysis based on the calibrated cohesive zone model are in agreement with the experimental data.


Author(s):  
Şerif Çitil

In this study, curved lap joints were designed, particularly for the cases in which configuration or aerodynamic design was essential. Furthermore, the effect of the surface area on their strength was investigated. Hence, curved joint types were prepared on aluminum plates (A2024-T3) that are commonly used for aviation, and an angled joint type was created by increasing the radius of curvature. The created joint types were then joined by a two-component acrylic structural adhesive (DP410). The joint models were designed in three dimensions, and a finite element analysis was performed. Cohesive zone models (bilinear, exponential, and separation-distance) based on energy principles were used in the finite element analysis to estimate the strength of the adhesively bonded joint. The mechanical properties of the materials used in the joint models were experimentally determined to obtain the numerical solutions, which were validated by further experiments. The obtained results demonstrated that there was an increase in the surface area on which the adhesive was applied as the radius of curvature of the scarf lap joints decreased; however, this had an adverse effect on the failure load that was carried.


Author(s):  
Yi Pan ◽  
Assimina A. Pelegri

A micro-mechanics based finite element analysis method for random chopped fiber composites is applied. A modified random sequential adsorption technique is developed to generate representative volume elements of the composites so to overcome the “jamming limit” in the existing techniques. A homogenization scheme is applied to acquire the effective elastic constants of the composite. Two damage mechanisms are considered, matrix cracking and interfacial debonding, which occur prior to fiber breakage and consequentially leading to catastrophic failure. The incremental plastic model and the cohesive zone model are adopted to account for matrix plasticity and interfacial debonding, respectively. The finite element analysis results are validated by experimental data.


Sign in / Sign up

Export Citation Format

Share Document