scholarly journals Research on Large-Scale Road Network Partition and Route Search Method Combined with Traveler Preferences

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
De-Xin Yu ◽  
Zhao-Sheng Yang ◽  
Yao Yu ◽  
Xiu-Rong Jiang

Combined with improved Pallottino parallel algorithm, this paper proposes a large-scale route search method, which considers travelers’ route choice preferences. And urban road network is decomposed into multilayers effectively. Utilizing generalized travel time as road impedance function, the method builds a new multilayer and multitasking road network data storage structure with object-oriented class definition. Then, the proposed path search algorithm is verified by using the real road network of Guangzhou city as an example. By the sensitive experiments, we make a comparative analysis of the proposed path search method with the current advanced optimal path algorithms. The results demonstrate that the proposed method can increase the road network search efficiency by more than 16% under different search proportion requests, node numbers, and computing process numbers, respectively. Therefore, this method is a great breakthrough in the guidance field of urban road network.

2021 ◽  
Author(s):  
Lifu Song ◽  
Feng Geng ◽  
Ziyi Song ◽  
Bing-Zhi Li ◽  
Ying-Jin Yuan

Abstract Data storage in DNA, which store information in polymers, is a potential technology with high density and long-term features. However, the indels, strand rearrangements, and strand breaks that emerged during synthesis, amplification, sequencing, and storage of DNA molecules need to be handled. Here, we report a de Bruijn graph-based, greedy path search algorithm (DBG-GPS), which can efficiently handle all these issues by efficient reconstruction of the DNA strands. DBG-GPS achieves accurate data recovery with low-quality, deep error-prone PCR products, and accelerated aged DNA samples (solution, 70℃ for two weeks). The robustness of DBG-GPS was verified with 100 times of multiple retrievals using PCR products with massive unspecific amplifications. Moreover, DBG-GPS shows linear decoding complexity and more than 100 times faster than the multiple alignment-based methods, indicating a suitable solution for large-scale data storage.


2017 ◽  
Vol 11 (7) ◽  
pp. 391-401 ◽  
Author(s):  
Joshua Stipancic ◽  
Luis Miranda-Moreno ◽  
Aurélie Labbe ◽  
Nicolas Saunier

2021 ◽  
Author(s):  
Jiawei Zhang ◽  
Maosi Geng ◽  
Jiangsa Gu ◽  
Xiqun (Michael) Chen

2021 ◽  
Vol 12 (4) ◽  
pp. 227
Author(s):  
Bin Yang ◽  
Xuewei Song ◽  
Zhenhai Gao

A global reference path generated by a path search algorithm based on a road-level driving map cannot be directly used to complete the efficient autonomous path-following motion of autonomous vehicles due to the large computational load and insufficient path accuracy. To solve this problem, this paper proposes a lane-level bidirectional hybrid path planning method based on a high-definition map (HD map), which effectively completes the high-precision reference path planning task. First, the global driving environment information is extracted from the HD map, and the lane-level driving map is constructed. Real value mapping from the road network map to the driving cost is realized based on the road network information, road markings, and driving behavior data. Then, a hybrid path search method is carried out for the search space in a bidirectional search mode, where the stopping conditions of the search method are determined by the relaxation region in the two search processes. As the search process continues, the dimension of the relaxation region is updated to dynamically adjust the search scope to maintain the desired search efficiency and search effect. After the completion of the bidirectional search, the search results are evaluated and optimized to obtain the reference path with the optimal traffic cost. Finally, in an HD map based on a real scene, the path search performance of the proposed algorithm is compared with that of the simple bidirectional Dijkstra algorithm and the bidirectional BFS search algorithm. The results show that the proposed path search algorithm not only has a good optimization effect, but also has a high path search efficiency.


2014 ◽  
Vol 556-562 ◽  
pp. 3980-3983
Author(s):  
De Xin Yu ◽  
Xin Zhao ◽  
Kun Zheng

The paper proposes a large-scale route search method based on bidirectional ant-colony microcanonical annealing algorithm, which adopts double search. The underlying idea is to verify the proposed path search method under the real road network of Changchun city. The paper uses matlab to encode algorithm and adopts Mapinfo software mapping network for contrastive analyzing the proposed path search method and classical algorithm. The results demonstrate that the proposed method is larger advantage in running time and the global optimal solution, which has a good practicability.


Sign in / Sign up

Export Citation Format

Share Document