scholarly journals On the Odd Prime Solutions of the Diophantine Equationxy+yx=zz

2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Yuanyuan Deng ◽  
Wenpeng Zhang

Using the elementary method and some properties of the least solution of Pell’s equation, we prove that the equationxy+yx=zzhas no positive integer solutions (x,y,z) withxandybeing odd primes.

2019 ◽  
Vol 103 (556) ◽  
pp. 101-110
Author(s):  
Ken Surendran ◽  
Desarazu Krishna Babu

There are recursive expressions (see [1]) for sequentially generating the integer solutions to Pell's equation:p2 −Dq2 = 1, whereDis any positive non-square integer. With known positive integer solutionp1 andq1 we can compute, using these recursive expressions,pnandqnfor alln> 1. See Table in [2] for a list of smallest integer, orfundamental, solutionsp1 andq1 forD≤ 128. These (pn,qn) pairs also formrational approximationstothat, as noted in [3, Chapter 3], match with convergents (Cn=pn/qn) of the Regular Continued Fractions (RCF, continued fractions with the numerator of all fractions equal to 1) for.


2015 ◽  
Vol 11 (04) ◽  
pp. 1107-1114 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let D1, D2, D, k, λ be fixed integers such that D1 ≥ 1, D2 ≥ 1, gcd (D1, D2) = 1, D = D1D2 is not a square, ∣k∣ > 1, gcd (D, k) = 1 and λ = 1 or 4 according as 2 ∤ k or not. In this paper, we prove that every solution class S(l) of the equation D1x2-D2y2 = λkz, gcd (x, y) = 1, z > 0, has a unique positive integer solution [Formula: see text] satisfying [Formula: see text] and [Formula: see text], where z runs over all integer solutions (x,y,z) of S(l),(u1,v1) is the fundamental solution of Pell's equation u2 - Dv2 = 1. This result corrects and improves some previous results given by M. H. Le.


Author(s):  
Ruiqin Fu ◽  
Hai Yang

Let [Formula: see text] be fixed positive integers such that [Formula: see text] is not a perfect square and [Formula: see text] is squarefree, and let [Formula: see text] denote the number of distinct prime divisors of [Formula: see text]. Let [Formula: see text] denote the least solution of Pell equation [Formula: see text]. Further, for any positive integer [Formula: see text], let [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text]. In this paper, using the basic properties of Pell equations and some known results on binary quartic Diophantine equations, a necessary and sufficient condition for the system of equations [Formula: see text] and [Formula: see text] to have positive integer solutions [Formula: see text] is obtained. By this result, we prove that if [Formula: see text] has a positive integer solution [Formula: see text] for [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, then [Formula: see text] and [Formula: see text], where [Formula: see text] is a positive integer, [Formula: see text] or [Formula: see text] and [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, [Formula: see text] is the integer part of [Formula: see text], except for [Formula: see text]


2004 ◽  
Vol 95 (2) ◽  
pp. 171 ◽  
Author(s):  
Maohua Le

Let $D$ be a positive integer such that $D-1$ is an odd prime power. In this paper we give an elementary method to find all positive integer solutions $(x, y, z)$ of the system of equations $x^2-Dy^2=1-D$ and $x=2z^2-1$. As a consequence, we determine all solutions of the equations for $D=6$ and $8$.


1998 ◽  
Vol 21 (3) ◽  
pp. 581-586
Author(s):  
Geoffrey B. Campbell

We obtain infinite products related to the concept of visible from the origin point vectors. Among these is∏k=3∞(1−Z)φ,(k)/k=11−Zexp(Z32(1−Z)2−12Z−12Z(1−Z)),  |Z|<1,in whichφ3(k)denotes for fixedk, the number of positive integer solutions of(a,b,k)=1wherea<b<k, assuming(a,b,k)is thegcd(a,b,k).


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2018 ◽  
Vol 61 (03) ◽  
pp. 535-544
Author(s):  
TOMOHIRO YAMADA

AbstractWe shall show that, for any positive integer D &gt; 0 and any primes p1, p2, the diophantine equation x2 + D = 2sp1kp2l has at most 63 integer solutions (x, k, l, s) with x, k, l ≥ 0 and s ∈ {0, 2}.


2015 ◽  
Vol 713-715 ◽  
pp. 1483-1486
Author(s):  
Yi Wu ◽  
Zheng Ping Zhang

In this paper, we studied the positive integer solutions of a typical Diophantine equation starting from two basic equations including a Diophantine equation and a Pell equation, and we will prove all the positive integer solutions of the typical Diophantine equation.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Sign in / Sign up

Export Citation Format

Share Document